How I Lost My OWL: Retracting Knowledge from EL Concepts
- Ontologies are valuable tools for knowledge representation and important building blocks of the Semantic Web. They are not static and can change over time. Changing an ontology can be necessary for various reasons: the domain that is represented by an ontology can change or an ontology is reused and must be adapted to the new context. In addition, modeling errors could have been introduced into the ontology which must be found and removed. The non-triviality of the change process has led to the emerge of ontology change as an own field of research. The removal of knowledge from ontologies is an important aspect of this change process, because even the addition of new knowledge to an ontology potentially requires the removal of older, conflicting knowledge. Such a removal must be performed in a thought-out way. A naïve change of concepts within the ontology can easily remove other, unrelated knowledge or alter the semantics of concepts in an unintended way [2]. For these reasons, this thesis introduces a formal operator for the fine-grained retraction of knowledge from EL concepts which is partially based on the postulates for belief set contraction and belief base contraction [3, 4, 5] and the work of Suchanek et al. [6]. For this, a short introduction to ontologies and OWL 2 is given and the problem of ontology change is explained. It is then argued why a formal operator can support this process and why the Description Logic EL provides a good starting point for the development of such an operator. After this, a general introduction to Description Logic is given. This includes its history, an overview of its applications and common reasoning tasks in this logic. Following this, the logic EL is defined. In a next step, related work is examined and it is shown why the recovery postulate and the relevance postulate cannot be naïvely employed in the development of an operator that removes knowledge from EL concepts. Following this, the requirements to the operator are formulated and properties are given which are mainly based on the postulates for belief set and belief base contraction. Additional properties are developed which make up for the non-applicability of the recovery and relevance postulates. After this, a formal definition of the operator is given and it is shown that the operator is applicable to the task of a fine-grained removal of knowledge from EL concepts. In a next step, it is proven that the operator fulfills all the previously defined properties. It is then demonstrated how the operator can be combined with laconic justifications [7] to assist a human ontology editor by automatically removing unwanted consequences from an ontology. Building on this, a plugin for the ontology editor Protégé is introduced that is based on algorithms that were derived from the formal definition of the operator. The content of this work is then summarized and a final conclusion is drawn. The thesis closes with an outlook into possible future work.
- Ontologien sind wichtige Werkzeuge zur Wissensrepräsentation und elementare Bausteine des Semantic Web. Sie sind jedoch nicht statisch und können sich über die Zeit verändern. Die Gründe hierfür sind vielfältig: Konzepte innerhalb einer Ontologie können fehlerhaft modelliert worden sein, die von der Ontologie repräsentierte Domäne kann sich verändern oder eine Ontologie kann wiederverwendet werden und muss an den neuen Kontext angepasst oder mit bestehenden Ontologien verbunden werden. Die Schwierigkeit dieses Prozesses hat zur Entstehung des Forschungsfeldes der Ontology Change geführt. Das Entfernen von Wissen aus Ontologien ist ein wichtiger Aspekt dieses Änderungsprozesses, da selbst das Hinzufügen neuen Wissens zu einer Ontologie das Entfernen bestehenden Wissens notwendig machen kann, falls dieses mit den neuen Vorstellungen in Konflikt steht. Dieses Entfernen muss jedoch wohldurchdacht sein, da das Ändern bestehender Konzepte leicht zu viel Wissen aus der Ontologie entfernen oder die semantische Bedeutung der Konzepte auf eine potenziell unerwartete Weise verändern kann. In dieser Arbeit wird daher ein formaler Operator zum präzisen Entfernen von Wissen aus Konzepten vorgestellt. Dieser basiert auf der Beschreibungslogik EL und baut partiell auf den Postulaten für Belief Set und Belief Base Contraction sowie der Arbeit von Suchanek et al. auf. Hierfür wird zunächst ein Einstieg in das Thema Ontologien und die Ontologiesprache OWL 2 gegeben und das Problemfeld der Ontology Change wird erläutert. Es wird dann gezeigt, wie ein formaler Operator diesen Prozess unterstützen kann und weshalb die Beschreibungslogik EL einen guten Ausgangspunkt für die Entwicklung eines solchen Operators darstellt. Anschließend wird ein Einblick in das Feld der Beschreibungslogiken gegeben. Hierfür wird die Geschichte der Beschreibungslogik kurz umrissen, Anwendungsgebiete werden genannt und es werden Standardprobleme in dieser Logik erläutert. In diesem Zusammenhang wird die Beschreibungslogik EL formal eingeführt. In einem nächsten Schritt werden verwandte Arbeiten untersucht und es wird gezeigt, warum das Recovery- und Relevance-Postulat für das Entfernen von Wissen aus Konzepten nicht unmittelbar anwendbar ist. Die hier gewonnenen Erkenntnisse werden anschließend dazu genutzt, die Anforderungen an den Operator zu formalisieren. Diese basieren hauptsächlich auf den Postulaten für Belief Set und Belief Base Contraction. Zusätzlich werden weitere Eigenschaften formuliert welche den Verlust des Recovery- bzw. Relevance-Postulates ausgleichen sollen. In einem nächsten Schritt wird der Operator definiert und es wird gezeigt, dass diese Definition das präzise Entfernen von Wissen aus EL-Konzepten gestattet. Mittels formaler Beweise wird zudem gezeigt, dass diese Definition alle zuvor aufgestellten Anforderungen erfüllt. In einem weiteren Beispiel wird dargestellt, wie der Operator in Verbindung mit sogenannten Laconic Justifications verwendet werden kann, um einen menschlichen Ontology-Editor durch das automatisierte Entfernen von unerwünschten Konsequenzen aus der Ontologie zu unterstützen. Aufbauend auf Algorithmen, welche aus der formalen Definition des Operators abgeleitet wurden, wird ein Plugin zum Entfernen von Wissen aus Ontologien für den Ontology-Editor Protégé vorgestellt. Anschließend werden die bisherigen Erkenntnisse zusammengefasst und es wird ein Fazit gezogen. Die Arbeit schließt mit einem Ausblick über mögliche zukünftige Forschung.