• search hit 63 of 99
Back to Result List

Factors triggering the ecotoxicity of metal-based nanoparticles towards aquatic invertebrates

  • Nanoparticles are produced and used in huge amounts increasing their probability to end up in surface waters. There, they are subject to environmentally driven modification processes. Consequently, aquatic life may be exposed to different nanoparticle agglomerate sizes, while after sedimentation benthic organisms are more likely to be affected. However, most ecotoxicity studies with nanoparticles exclusively investigated implications of their characteristics (e.g. size) on pelagic organisms, ignoring environmentally modified nanoparticles. Therefore, a systematic assessment of factors triggering the fate and toxicity of nanoparticles under environmentally relevant conditions is needed. The present thesis, therefore, investigates the implications of nanoparticle related factors (i.e., inherent material-properties and nanoparticle characteristics) as well as environmental conditions towards the pelagic living organism Daphnia magna and the benthic species Gammarus fossarum. In detail, inert titanium dioxide (nTiO2) and ion-releasing silver nanoparticles (nAg), both of varying particle characteristics (e.g. initial size), were tested for their toxicity under different environmental conditions (e.g. ultraviolet-light (UV-light)). The results indicate that the toxicity of nTiO2 and nAg is mainly determined by: their adsorption potential onto biota, and their fate in terms of reactive oxygen species or Ag+ ion release. Thus, inherent material-properties, nanoparticle characteristics and environmental conditions promoting or inhibiting these aspects revealed significant implications in the toxicity of nTiO2 and nAg towards daphnids. Furthermore, the presence of ambient UV-light, for example, adversely affected gammarids at 0.20 mg nTiO2/L, while under darkness no effects occurred even at 5.00 mg nTiO2/L. Hence, the currently associated risk of nanoparticles might be underestimated if disregarding their interaction with environmental parameters
  • Heutzutage werden Nanopartikel in großem Maßstab produziert, weshalb deren Eintrag in Oberflächengewässer immer wahrscheinlicher wird. Dort angelangt unterliegen sie verschiedenen umweltbedingten (Oberflächen-)Modifikationen, die in letzter Konsequenz eine Vielfalt von Nanopartikel-Agglomeraten unterschiedlicher Größe hervorbringen. Direkt davon betroffen sind aquatische Lebewesen, die einer entsprechenden Nanopartikelexposition in der Wasserphase ausgesetzt sind. Nach Sedimentation der Agglomerate können aber ebenfalls benthische Organismen betroffen sein. Bisherige ökotoxikologische Untersuchungen haben solche umweltbedingten Einflüsse außer Acht gelassen und viel mehr nanopartikel-spezifische Charakteristika auf deren Wirkweise gegenüber pelagischen Vertretern untersucht. Aus diesem Grund ist eine systematische Untersuchung derer Faktoren von Nöten, die den Verbleib und das Verhalten aber auch die Toxizität von Nanopartikeln in der Umwelt maßgeblich beeinflussen. Die kumulative Arbeit dieser Dissertation macht sich dies zum Ziel und hinterfragt entsprechende Faktoren die einerseits durch Nanopartikel assoziierte Aspekte (definiert als i) inhärente Stoffeigenschaft des untersuchten Materials und ii) Nanopartikel Charakteristika)) und andererseits durch Umweltbedingungen in Oberflächengewässern geprägt sind. In diesem Kontext wurden verschiedene ökotoxikologische Untersuchungen mit inerten Titandioxid Nanopartikeln (nTiO2) und Ionen freisetzenden Silber Nanopartikeln (nAg) unter Berücksichtigung verschiedener Nanopartikel Charakteristika (z.B. initiale Partikelgröße, Oberflächengröße) und Umweltbedingungen (z.B. Ionenstärke, ultraviolettes Licht (UV-Licht)), durchgeführt. Als Testorganismen dienten dazu die pelagischen bzw. benthischen Vertreter Daphnia magna und Gammarus fossarum. Die Ergebnisse deuten daraufhin, dass die Toxizität von nTiO2 und nAg gegenüber Daphnien maßgeblich durch das Adsorptionspotential (im Bezug auf das Anhaften der Partikel an die Organismenoberfläche) und das Umweltverhalten (Freisetzung von radikalen Sauerstoffspezies oder Metallionen) der Nanopartikel bestimmt wird. Darüber hinaus wurde die Nanopartikeltoxizität von jenen inhärenten Stoffeigenschaften, Nanopartikelcharakteritika und Umweltbedingungen am meisten beeinflusst, welche die zuvor genannten Aspekte entweder verstärken oder abschwächen. Hierfür beispielhaft ist der toxizitätsverstärkende Effekt von UV-Licht auf nTiO2 in Experimenten mit Gammarus: Während eine Exposition der Organismen in absoluter Dunkelheit selbst bei 5,00 mg nTiO2/L keine Effekt hervorrief, kam es in der Anwesenheit von UV-Licht schon bei 0,20 mg nTiO2/L zu schwerwiegenden Effekten auf sublethaler und lethaler Ebene. Unter Berücksichtigung der Ergebnisse dieser Dissertation sowie bisherige Erkenntnisse der Wissenschaft im Allgemeinen, ist die derzeitige Risikoeinschätzung von Nanopartikeln möglicherweise unprotektiv, sofern eine Interaktion von Nanopartikeln und Umwelteinflüssen unberücksichtigt bleibt

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Frank Seitz
URN:urn:nbn:de:kola-10224
Referee:Mirco Bundschuh, Ralf Schulz
Document Type:Doctoral Thesis
Language:English
Date of completion:2015/10/09
Date of publication:2015/10/09
Publishing institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Date of final exam:2015/09/11
Release Date:2015/10/09
Number of pages:205 S.
Institutes:Fachbereich 7
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG