Visualization of Neural Networks
- Artificial neural networks is a popular field of research in artificial intelli-
gence. The increasing size and complexity of huge models entail certain
problems. The lack of transparency of the inner workings of a neural net-
work makes it difficult to choose efficient architectures for different tasks.
It proves to be challenging to solve these problems, and with a lack of in-
sightful representations of neural networks, this state of affairs becomes
entrenched. With these difficulties in mind a novel 3D visualization tech-
nique is introduced. Attributes for trained neural networks are estimated
by utilizing established methods from the area of neural network optimiza-
tion. Batch normalization is used with fine-tuning and feature extraction to
estimate the importance of different parts of the neural network. A combi-
nation of the importance values with various methods like edge bundling,
ray tracing, 3D impostor and a special transparency technique results in a
3D model representing a neural network. The validity of the extracted im-
portance estimations is demonstrated and the potential of the developed
visualization is explored.
- Künstliche neuronale Netze sind ein beliebtes Forschungsgebiet der künst-
lichen Intelligenz. Die zunehmende Größe und Komplexität der riesigen
Modelle bringt gewisse Probleme mit sich. Die mangelnde Transparenz
der inneren Abläufe eines neuronalen Netzes macht es schwierig, effiziente
Architekturen für verschiedene Aufgaben auszuwählen. Es erweist sich als
herausfordernd, diese Probleme zu lösen. Mit einem Mangel an aufschluss-
reichen Darstellungen neuronaler Netze verfestigt sich dieser Zustand. Vor
dem Hintergrund dieser Schwierigkeiten wird eine neuartige Visualisie-
rungstechnik in 3D vorgestellt. Eigenschaften für trainierte neuronale Net-
ze werden unter Verwendung etablierter Methoden aus dem Bereich der
Optimierung neuronaler Netze berechnet. Die Batch-Normalisierung wird
mit Fine-tuning und Feature Extraction verwendet, um den Einfluss der Be-
standteile eines neuronalen Netzes abzuschätzen. Eine Kombination dieser
Einflussgrößen mit verschiedenen Methoden wie Edge-bundling, Raytra-
cing, 3D-Impostor und einer speziellen Transparenztechnik führt zu einem
3D-Modell, das ein neuronales Netz darstellt. Die Validität der ermittelten
Einflusswerte wird demonstriert und das Potential der entwickelten Visua-
lisierung untersucht.