• search hit 1 of 1
Back to Result List

Nuclear Potential Clustering of Data

  • Initial goal of the current dissertation was the determination of image-based biomarkers sensitive for neurodegenerative processes in the human brain. One such process is the demyelination of neural cells characteristic for Multiple sclerosis (MS) - the most common neurological disease in young adults for which there is no cure yet. Conventional MRI techniques are very effective in localizing areas of brain tissue damage and are thus a reliable tool for the initial MS diagnosis. However, a mismatch between the clinical fndings and the visualized areas of damage is observed, which renders the use of the standard MRI diffcult for the objective disease monitoring and therapy evaluation. To address this problem, a novel algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain is developed in the current work. The method extents a previously published approach for the simultaneous measurement of brain T1, T∗ 2 and total water content. Employing the multiexponential T∗ 2 decay signal of myelinated tissue, myelin water content is measured based on the quantifcation of two water pools (myelin water and rest) with different relaxation times. Whole brain in vivo myelin water content maps are acquired in 10 healthy controls and one subject with MS. The in vivo results obtained are consistent with previous reports. The acquired quantitative data have a high potential in the context of MS. However, the parameters estimated in a multiparametric acquisition are correlated and constitute therefore an ill-posed, nontrivial data analysis problem. Motivated by this specific problem, a new data clustering approach is developed called Nuclear Potential Clustering, NPC. It is suitable for the explorative analysis of arbitrary dimensional and possibly correlated data without a priori assumptions about its structure. The developed algorithm is based on a concept adapted from nuclear physics. To partition the data, the dynamic behavior of electrically even charged nucleons interacting in a d-dimensional feature space is modeled. An adaptive nuclear potential, comprised of a short-range attractive (Strong interaction) and a long-range repulsive term (Coulomb potential), is assigned to each data point. Thus, nucleons that are densely distributed in space fuse to build nuclei (clusters), whereas single point clusters are repelled (noise). The algorithm is optimized and tested in an extensive study with a series of synthetic datasets as well as the Iris data. The results show that it can robustly identify clusters even when complex configurations and noise are present. Finally, to address the initial goal, quantitative MRI data of 42 patients are analyzed employing NPC. A series of experiments with different sets of image-based features show a consistent grouping tendency: younger patients with low disease grade are recognized as cohesive clusters, while those of higher age and impairment are recognized as outliers. This allows for the definition of a reference region in a feature space associated with phenotypic data. Tracking of the individual's positions therein can disclose patients at risk and be employed for therapy evaluation.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Vyara Tonkova
URN:urn:nbn:de:kola-20849
Advisor:Dietrich Paulus
Document Type:Doctoral Thesis
Language:English
Date of completion:2020/07/24
Date of publication:2020/07/24
Publishing institution:Universität Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz, Fachbereich 4
Date of final exam:2019/07/31
Release Date:2020/08/20
Number of pages:iv, 173
Institutes:Fachbereich 4 / Institut für Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG