• search hit 3 of 3
Back to Result List

Soil organic matter aging processes and their contribution to the sequestration of organic chemicals in soil

  • Soil organic matter (SOM) is a key component responsible for sequestration of organic molecules in soil and regulation of their mobility in the environment. The basic structure of SOM is a supramolecular assembly responding dynamically to the environmental factors and the presence of interacting molecules. Despite of the advances in the understanding of sorption processes, the relation between sorbate molecules, SOM supramolecular structure and its dynamics is limited. An example of a dynamic nature of SOM is a physicochemical matrix aging that is responsible for SOM structural arrangement. The underlying process of the physicochemical aging is the formation of water molecule bridges (WaMB) between functional groups of molecular segments. Since WaMB influence the stiffness of SOM structure, it was hypothesized that formation of WaMB contributes to the sequestration of organic molecules. However, this hypothesis has not been tested experimentally until now. Furthermore, the knowledge about the influence of organic molecules on WAMB is based solely on computer modeling studies. In addition, the influence of organic molecules on some physical phases forming SOM is not well understood. Especially, the interactions between organic molecules and crystalline phases represented by aliphatic crystallites, are only presumed. Thus, the investigation of those interactions in unfractioned SOM is of high importance. In order to evaluate the involvement of WaMB in the sequestration of organic molecules and to increase our understanding about interactions of organic chemicals with WaMB or aliphatic crystallites, the following hypotheses were tested experimentally. 1) Similarly to crystalline phases in synthetic polymers, aliphatic crystallites, as a part of SOM, cannot be penetrated by organic molecules. 2) The stability of WaMB is determined by the ability of surrounding molecules to interact with water forming WaMB. 3) WaMB prevent organic molecules to leave the SOM matrix and contribute thus to their immobilization. In order to test the hypotheses 1 and 2, a set of experiments including treatment of soils with chosen chemicals was prepared. Interaction abilities of these chemicals were characterized using interaction parameters from the Linear Solvation Energy Relationship theory. WaMB characteristics were monitored using Differential Scanning Calorimetry (DSC) allowing to measure the WaMB thermal stability and the rigidity of SOM matrix; which in turn was determined by the heat capacity change. In addition, DSC and 13C NMR spectroscopy assessed thermal properties and the structure of aliphatic crystallites. The spiking of samples with a model compound, phenol, and measurements of its desorption allowed to link parameters of the desorption kinetics with WaMB characteristics. The investigation showed that the WaMB stability is significantly reduced by the presence of molecules with H-donor/acceptor interaction abilities. The matrix rigidity associated with WaMB was mainly influenced by the McGowan’s volume of surrounding molecules, suggesting the importance of dispersion forces. The desorption kinetics of phenol followed a first order model with two time constants. Both of them showed a relation with WaMB stability, which supports the hypothesis that WaMB contribute to the physical immobilization of organic molecules. The experiments targeted to the crystallites revealed their structural change from the ordered to the disordered state, when in contact with organic chemicals. This manifested in their melting point depression and the decrease of overall crystallinity. Described structural changes were caused by molecules interacting with specific as well as non-specific forces, which suggests that aliphatic crystallites can be penetrated and modified by molecules with a broad range of interaction abilities. This work shows that chosen organic molecules interact with constituents of SOM as exemplified on WaMB and aliphatic crystallites, and cause measurable changes of their structure and properties. These findings show that the relevance of aliphatic crystallites for sorption in soil may have been underestimated. The results support the hypothesis that physicochemical matrix aging significantly contributes to the immobilization of organic chemicals in SOM.
  • Die Organische Bodensubstanz (OBS) nimmt eine Schlüsselrolle in der Sequestrierung organischer Moleküle und damit in der Regulierung ihrer Mobilität in Böden ein. Sie besteht aus Molekülen, die durch supramolekulare Wechselwirkungen strukturiert sind und dynamisch auf Umweltfaktoren und andere Moleküle reagieren können. Der Einfluss von Sorbateigenschaften und supramolekularer Struktur der OBS und deren Dynamik auf Sorptionsprozesse an der OBS ist bisher nur begrenzt verstanden. Ein Beispiel für das dynamische Verhalten der OBS ist deren physikochemische Alterung, die zu Umstrukturierungen in der OBS-Matrix führt. Dieser liegt die Bildung von Wassermolekülbrücken (WaMB) zwischen funktionellen Gruppen einzelner Molekülsegmente zugrunde. Da die WaMB die Struktur der OBS und ihre Stabilität wesentlich beeinflussen, wird davon ausgegangen, dass diese zur Sequestrierung von organischen Molekülen in der OBS beitragen. Diese Hypothese wurde jedoch noch nicht experimentell überprüft. Bisheriges Wissen darüber, wie organische Moleküle die Eigenschaften von WaMB beeinflussen, basiert weitestgehend auf Computermodellierungen. Da unbekannt ist, wie Moleküle, die in die OBS eindringen, deren physikalische Phasen beeinflussen, bedürfen insbesondere die vermuteten Wechselwirkungen zwischen organischen Molekülen und aliphatischen kristallinen Phasen unbedingt einer experimentellen Überprüfung. Dazu wurden in dieser Arbeit die folgenden Hypothesen experimentell getestet. 1) Analog zu kristallinen Phasen in synthetischen Polymeren können aliphatische Kristallite in der OBS nicht von organischen Molekülen durchdrungen werden. 2) Die Stabilität von WaMB wird durch die Fähigkeit, der sie umgebenden Moleküle mit Wassermolekülen zu interagieren, bestimmt. 3) WaMB können verhindern, dass organische Moleküle die OBS-Matrix verlassen und tragen dadurch zu ihrer physikalischen Immobilisierung bei. Um die Hypothesen 1 und 2 zu überprüfen, wurden Böden mit ausgewählten Chemikalien behandelt, deren Wechselwirkungspotenzial mit Parametern der Theorie der Linearen Solvatationsenergiebeziehung charakterisiert wurde. Die Eigenschaften der WaMB, wie thermische Stabilität und Mobilität der verknüpften OBS-Molekülsegmente, wurden mit der Dynamischen Differenzkalorimetrie (DDK) charakterisiert. Struktur und thermische Eigenschaften von aliphatischen Kristalliten wurden mithilfe von 13C-NMR-Spektroskopie und DDK untersucht. Die Dotierung von Bodenproben mit dem Modellschadstoff Phenol und Messungen zur Phenoldesorption ermöglichten es, die Parameter der Desorptionskinetik mit WaMB-Eigenschaften zu verknüpfen. Die Ergebnisse zeigen, dass die WaMB-Stabilität wesentlich durch Moleküle mit H-Donor- und Akzeptoreigenschaften gesenkt wird. Die mit den WaMB einhergehende Starrheit der OBS-Matrix wurde hauptsächlich durch das McGowan-Volumen der interagierenden Moleküle beeinflusst, was auf einen großen Einfluss der Dispersionskräfte hindeutet. Die Desorption von Phenol folgte einer Kinetik erster Ordnung mit zwei Zeitkonstanten, die beide mit der WaMB-Stabilität korrelierten, was die Hypothese stützt, dass WaMB zur physikalischen Immobilisierung von Phenol beiträgt. Die aliphatischen Kristalliten unterlagen nach Kontakt mit ausgewählten Chemikalien strukturellen Änderungen, die zu einem amorpheren Zustand und zu einer Senkung des Schmelzpunkts und einer signifikanten Abnahme der Kristallinität in der OBS führten. Diese strukturellen Änderungen konnten sowohl von Molekülen mit spezifischen, als auch von solchen mit unspezifischen Wechselwirkungen verursacht werden. Dies zeigt, dass Moleküle mit einem breiten Spektrum an Wechselwirkungspotenzialen in aliphatische Kristallite eindringen und deren Struktur verändern können. Am Beispiel von WaMB und aliphatischen Kristalliten wurde aus dieser Arbeit ersichtlich, dass organische Moleküle mit Bestandteilen der OBS interagieren und messbare Änderungen in deren Struktur und Eigenschaften verursachen können. Neben der Relevanz von aliphatischen Kristalliten für Sorptionsprozesse im Boden wurde gezeigt, dass die physikochemische Matrixalterung signifikant zur Immobilisierung von Schadstoffen in der OBS beiträgt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Pavel Ondruch
URN:urn:nbn:de:kola-16556
Referee:Gabriele E. Schaumann, Jiří Kučerík
Document Type:Doctoral Thesis
Language:English
Date of completion:2018/06/10
Date of publication:2018/06/14
Publishing institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Date of final exam:2018/03/23
Release Date:2018/06/14
Number of pages:64
Institutes:Fachbereich 7
Fachbereich 7 / Institut für Umweltwissenschaften
BKL-Classification:35 Chemie
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG