Conservation of the European weatherfish Misgurnus fossils - stocking measures, autecology and potential threats
- The European weatherfish (Misgurnus fossilis) is a benthic freshwater fish species belonging to the family Cobitidae, that is subjected to a considerable decline in many regions across its original distribution range. Due to its cryptic behavior and low economic value, the causes of threat to weatherfish remained partly unknown and the species is rarely at the center of conservation efforts. In order to address these concerns, the overall aim of the present thesis was to provide a comprehensive approach for weatherfish conservation, including the development of stocking measures, investigations on the species autecology and the evaluation of potential threats. The first objective was to devise and implement a regional reintroduction and stock enhancement program with hatchery-reared weatherfish in Germany. Within this program (2014-2016), a total number of 168,500 juvenile weatherfish were stocked to seven water systems. Recaptures of 45 individuals at two reintroduction sites supported the conclusion that the developed stocking strategy was appropriate. In order to broaden the knowledge about weatherfish autecology and thereby refining the rearing conditions and the selection of appropriate stocking waters, the second objective was to investigate the thermal requirements of weatherfish larvae. Here, the obtained results revealed that temperatures higher than previously suggested were tolerated by larvae, whereas low temperatures within the range of likely habitat conditions increased mortality rates. As weatherfish can be frequently found in agriculturally impacted waters (e.g. ditch systems), they are assumed to have an increased probability to be exposed to chemical stress. Since the resulting risk has not yet been investigated with a focus on weatherfish, the third objective was to provide a methodical foundation for toxicity testing that additionally complies with the requirements of alternative test methods. For this purpose, the acute fish embryo toxicity test was successfully transferred to weatherfish and first results exhibited that sensitivity of weatherfish towards a tested reference substance (3,4-dichloroaniline) was highest compared to other species. On the basis of these findings, the fourth objective was to apply weatherfish embryos for multiple sediment bioassays in order to investigate teratogenic effects derived from sediment-associated contaminants. In this context, weatherfish revealed particular sensitivity to water extractable substances, indicating that sediment contamination might pose a considerable risk. Moreover, as an endangered benthic fish species with high ecological relevance for European waters that are specifically exposed to hazardous contaminants, the weatherfish might be a prospective species for an ecological risk assessment of sediment toxicity. Overall, the present thesis contributed to the conservation of weatherfish by considering a variety of aspects that interact and reinforce one another in order to achieve improvements for the species situation.