• search hit 1 of 2
Back to Result List

Temporal tracking of objects utilizing deep learning

  • Tracking is an integral part of many modern applications, especially in areas like autonomous systems and Augmented Reality. For performing tracking there are a wide array of approaches. One that has become a subject of research just recently is the utilization of Neural Networks. In the scope of this master thesis an application will be developed which uses such a Neural Network for the tracking process. This also requires the creation of training data as well as the creation and training of a Neural Network. Subsequently the usage of Neural Networks for tracking will be analyzed and evaluated. This includes several aspects. The quality of the tracking for different degrees of freedom will be checked as well as the the impact of the Neural Network on the applications performance. Additionally the amount of required training data is investigated, the influence of the network architecture and the importance of providing depth data as part of the networks input. This should provide an insight into how relevant this approach could be for its adoption in future products.
  • Tracking ist ein zentraler Bestandteil vieler moderner technischer Anwendungen, insbesondere in den Bereichen autonome Systeme und Augmented Reality. Für Tracking gibt es viele unterschiedliche Ansätze. Ein erst seit kurzem verfolgter ist die Verwendung von Neuronalen Netzen. Im Rahmen dieser Masterarbeit wird eine eine Anwendung erstellt, welche für das Tracking ein Neuronales Netz verwendet. Dazu gehört ebenfalls die Erstellung von Trainingsdaten, sowie die Erstellung des Neuronalen Netzes und dessen Training. Anschließend wird die Verwendung von Neuronalen Netzen für Tracking analysiert und ausgewertet. Hierunter fallen verschiedene Aspekte. Es wird für eine unterschiedliche Anzahl an Freiheitsgraden geprüft wie gut das Tracking funktioniert und wie viel Performance dieser Ansatz kostet. Des Weiteren wird die Menge der benötigten Trainingsdaten untersucht, der Einfluss der Architektur des Netzwerks und wie wichtig das Vorhandensein von Tiefendaten für die Funktion des Trackings ist. Dies soll einen Einblick ermöglichen wie relevant dieser Ansatz für den Einsatz in zukünftigen Produkten sein könnte.

Download full text files

Export metadata

Metadaten
Author:Marcel Pohl
URN:urn:nbn:de:kola-18452
Referee:Stefan Müller, Nils Höhner
Document Type:Master's Thesis
Language:English
Date of completion:2019/05/06
Date of publication:2019/05/06
Publishing institution:Universität Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz, Fachbereich 4
Date of final exam:2018/10/04
Release Date:2019/05/06
Tag:Maschinelles Lernen
machine learning; tracking
Number of pages:49
Institutes:Fachbereich 4 / Institut für Computervisualistik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
BKL-Classification:54 Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG