• search hit 2 of 2
Back to Result List

Multi-material simulation with the Material Point Method

  • The Material Point Method (MPM) has proven to be a very capable simulation method in computer graphics that is able to model materials that were previously very challenging to animate [1, 2]. Apart from simulating singular materials, the simulation of multiple materials that interact with each other introduces new challenges. This is the focus of this thesis. It will be shown that the self-collision capabilities of the MPM can naturally handle multiple materials interacting in the same scene on a collision basis, even if the materials use distinct constitutive models. This is then extended by porous interaction of materials as in[3], which also integrates easily with MPM.It will furthermore be shown that regular single-grid MPM can be viewed as a subset of this multi-grid approach, meaning that its behavior can also be achieved if multiple grids are used. The porous interaction is generalized to arbitrary materials and freely changeable material interaction terms, yielding a flexible, user-controllable framework that is independent of specific constitutive models. The framework is implemented on the GPU in a straightforward and simple way and takes advantage of the rasterization pipeline to resolve write-conflicts, resulting in a portable implementation with wide hardware support, unlike other approaches such as [4].
  • Die Material Point Method (MPM) hat sich in der Computergrafik als äußerst fähige Simulationsmethode erwiesen, die in der Lage ist ansonsten schwierig zu animierende Materialien zu modellieren [1, 2]. Abgesehen von der Simulation einzelner Materialien stellt die Simulation mehrerer Materialien und ihrer Interaktion weitere Herausforderungen bereit. Dies ist Thema dieser Arbeit. Es wird gezeigt, dass die MPM durch die Fähigkeit Eigenkollisionen implizit handzuhaben ebenfalls in der Lage ist Kollisionen zwischen Objekten verschiedenster Materialien zu beschreiben, selbst, wenn verschiedene Materialmodelle eingesetzt werden. Dies wird dann um die Interaktion poröser Materialien wie in [3] erweitert, was ebenfalls gut mit der MPM integriert. Außerdem wird gezeigt das MPM auf Basis eines einzelnen Gitters als Untermenge dieses Mehrgitterverfahrens betrachtet werden kann, sodass man das gleiche Verhalten auch mit mehreren Gittern modellieren kann. Die poröse Interaktion wird auf beliebige Materialien erweitert, einschließlich eines frei formulierbaren Materialinteraktionsterms. Das Resultat ist ein flexibles, benutzersteuerbares Framework das unabhängig vom Materialmodell ist. Zusätzlich wird eine einfache GPU-Implementation der MPM vorgestellt, die die Rasterisierungspipeline benutzt um Schreibkonflikte aufzulösen. Anders als andere Implementationen wie [4] ist die vorgestellte Implementation kompatibel mit einer Breite an Hardware.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Maximilian Nilles
URN:urn:nbn:de:kola-21294
Referee:Stefan Müller
Advisor:Bastian Krayer
Document Type:Master's Thesis
Language:English
Date of completion:2020/11/02
Date of publication:2020/11/18
Publishing institution:Universität Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz, Fachbereich 4
Date of final exam:2020/05/11
Release Date:2020/11/18
Tag:Physiksimulation; Sand; Schnee
Material Point Method
Number of pages:iii, 79
Institutes:Fachbereich 4 / Institut für Computervisualistik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 006 Spezielle Computerverfahren
BKL-Classification:33 Physik / 33.14 Kontinuumsphysik
54 Informatik / 54.73 Computergraphik
54 Informatik / 54.76 Computersimulation
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG