• Treffer 7 von 7
Zurück zur Trefferliste

Trace organic chemicals in the water cycle

  • Water scarcity is already an omnipresent problem in many parts of the world, especially in sub-Saharan Africa. The dry years 2018 and 2019 showed that also in Germany water resources are finite. Projections and predictions for the next decades indicate that renewal rates of existing water resources will decline due the growing influence of climate change, but that water extraction rates will increase due to population growth. It is therefore important to find alternative and sustainable methods to make optimal use of the water resources currently available. For this reason, the reuse of treated wastewater for irrigation and recharge purposes has become one focus of scientific research in this field. However, it must be taken into account that wastewater contains so-called micropollutants, i.e., substances of anthropogenic origin. These are, e.g., pharmaceuticals, pesticides and industrial chemicals which enter the wastewater, but also metabolites that are formed in the human body from pharmaceuticals or personal care products. Through the treatment in wastewater treatment plants (WWTPs) as well as through chemical, biological and physical processes in the soil passage during the reuse of water, these micropollutants are transformed to new substances, known as transformation products (TPs), which further broaden the number of contaminants that can be detected within the whole water cycle. Despite the fact that the presence of human metabolites and environmental TPs in untreated and treated wastewater has been known for a many years, they are rarely included in common routine analysis methods. Therefore, a first goal of this thesis was the development of an analysis method based on liquid chromatography - tandem mass spectrometry (LC-MS/MS) that contains a broad spectrum of frequently detected micropollutants including their known metabolites and TPs. The developed multi-residue analysis method contained a total of 80 precursor micropollutants and 74 metabolites and TPs of different substance classes. The method was validated for the analysis of different water matrices (WWTP influent and effluent, surface water and groundwater from a bank filtration site). The influence of the MS parameters on the quality of the analysis data was studied. Despite the high number of analytes, a sufficient number of datapoints per peak was maintained, ensuring a high sensitivity and precision as well as a good recovery for all matrices. The selection of the analytes proved to be relevant as 95% of the selected micropollutants were detected in at least one sample. Several micropollutants were quantified that were not in the focus of other current multi-residue analysis methods (e.g. oxypurinol). The relevance of including metabolites and TPs was demonstrated by the frequent detection of, e.g., clopidogrel acid and valsartan acid at higher concentrations than their precursors, the latter even being detected in samples of bank filtrate water. By the integration of metabolites, which are produced in the body by biological processes, and biological and chemical TPs, the multi-residue analysis method is also suitable for elucidating degradation mechanisms in treatment systems for water reuse that, e.g., use a soil passage for further treatment. In the second part of the thesis, samples from two treatment systems based on natural processes were analysed: a pilot-scale above-ground sequential biofiltration system (SBF) and a full-scale soil aquifer treatment (SAT) site. In the SBF system mainly biological degradation was observed, which was clearly demonstrated by the detection of biological TPs after the treatment. The efficiency of the degradation was improved by an intermediate aeration, which created oxic conditions in the upper layer of the following soil passage. In the SAT system a combination of biodegradation and sorption processes occurred. By the different behaviour of some biodegradable micropollutants compared to the SBF system, the influence of redox conditions and microbial community was observed. An advantage of the SAT system over the SBF system was found in the sorption capacity of the natural soil. Especially positively charged micropollutants showed attenuation due to ionic interactions with negatively charged soil particles. Based on the physicochemical properties at ambient pH, the degree of removal in the investigated systems and the occurrence in the source water, a selection of process-based indicator substances was proposed. Within the first two parts of this thesis a micropollutant was frequently detected at elevated concentrations in WWTPs effluents, which was not previously in the focus of environmental research: the antidiabetic drug sitagliptin (STG). STG showed low degradability in biological systems and thus it was investigated to what extend chemical treatment by ozonation can ensure attenuation of it. STG contains an aliphatic primary amine as the principal point of attack for the ozone molecule. There is only limited information about the behaviour of this functional group during ozonation and thus, STG served as an example for other micropollutants containing aliphatic primary amines. A pH-dependent degradation kinetic was observed due to the protonation of the primary amine at lower pH values. At pH values in the range 6 - 8, which is typical for the environment and in WWTPs, STG showed degradation kinetics in the range of 103 M-1s-1 and thus belongs to the group of readily degradable substances. However, complete degradation can only be expected at significantly higher pH values (> 9). The transformation of the primary amine moiety into a nitro group was observed as the major degradation mechanism for STG during ozonation. Other mechanisms involved the formation of a diketone, bond breakages and the formation of trifluoroacetic acid (TFA). Investigations at a pilot-scale ozonation plant using the effluent of a biological degradation of a municipal WWTP as source water confirmed the results of the laboratory studies: STG could not be removed completely even at high ozone doses and the nitro compound was formed as the main TP and remained stable during further ozonation and subsequent biological treatment. It can therefore be assumed that under realistic conditions both a residual concentration of STG and the formed main TP as well as other stable TPs such as TFA can be detected in the effluents of a WWTP consisting of conventional biological treatment followed by ozonation and subsequent biological polishing steps.
  • In vielen Teilen der Welt, vor allem in Subsahara-Afrika, ist Wasserknappheit bereits ein allgegenwärtiges Problem. Doch die Trockenjahre 2018 und 2019 zeigten, dass auch in Deutschland die Wasserressourcen endlich sind. Projektionen und Vorhersagen für die nächsten Jahrzehnte weisen zudem darauf hin, dass durch den steigenden Einfluss des Klimawandels die Erneuerungsraten der bestehenden Wasserressourcen zurückgehen, die Entnahmemengen aber aufgrund von Populationswachstum steigen werden. Es ist demnach an der Zeit, alternative und nachhaltige Methoden zu finden, die derzeit vorhandenen Wasserressourcen optimal zu nutzen. Daher rückte in den vergangenen Jahren die Wiederverwendung von geklärtem Abwasser zur Bewässerung landwirtschaftlicher Flächen und/oder der Grundwasseranreicherung in den Fokus der Wissenschaft. Dabei ist aber zu berücksichtigen, dass in geklärtem Abwasser sogenannte Spurenstoffe zu finden sind, d.h. Substanzen, die durch anthropogenen Einfluss in den Wasserkreislauf gelangen. Dabei handelt es sich z.B. um Pharmazeutika, Pestizide und Industriechemikalien, aber auch um Metabolite, die im menschlichen Körper gebildet werden und in das Abwasser gelangen. Durch die Wasseraufbereitungsschritte in den Kläranlagen als auch durch biologische, chemische und physikalische Prozesse in der Bodenpassage bei der Wiederverwendung des geklärten Abwassers werden diese Spurenstoffe zu anderen Substanzen, den Transformationsprodukten (TPs), umgewandelt, die das Spektrum der Spurenstffe zusätzlich erweitern. Trotz der Tatsache, dass das Vorhandensein von Human-Metaboliten und TPs in ungeklärtem und geklärten Abwasser seit langem bekannt ist, werden sie in gängigen Routine-Messmethoden nur selten berücksichtigt. Daher war es ein erstes Ziel dieser Dissertation eine Analyse-Methode zu erstellen, basierend auf Flüssigchromatographie-Tandem Massenspektrometrie (LC-MS/MS), die ein möglichst breites Spektrum an Spurenstoffen inklusive bekannter Metabolite und TPs enthält. Die entwickelte Multi-Analyt-Methode umfasst insgesamt 80 Ausgangssubstanzen und 74 Metabolite und TPs verschiedener Substanzklassen und ist für die Anwendung in verschiedenen Wassermatrices (Zu- und Ablauf von Kläranlagen, Oberflächenwasser und Grundwasser aus einer Uferfiltrationsanlage) validiert. Dabei wurde auch der Einfluss der MS-Parameter auf die Qualität der Analysedaten untersucht. Trotz der hohen Anzahl an Substanzen konnte eine ausreichende Anzahl an Datenpunkten je Peak generiert werden, wodurch eine hohe Empfindlichkeit und Präzision sowie eine gute Wiederfindung für alle Matrices erreicht wurden. Die Auswahl der Analyten erwies sich als relevant für die Untersuchung von Umweltmatrices, da 95% der Substanzliste in mindestens einer Probe nachgewiesen wurden. Mehrere Spurenstoffe, die bisher nicht im Fokus der gegenwärtigen Multi-Analyt-Methoden standen, wurden bei erhöhten Konzentrationen im Wasserkreislauf quantifiziert (z.B. Oxypurinol). Die Relevanz der Untersuchung von Metaboliten und TPs zeigte sich durch den Nachweis von z.B. Clopidogrel-Säure und Valsartansäure mit deutlich höheren Konzentrationen als ihre Ausgangssubstanzen. Valsartansäure konnte zudem sogar im Uferfiltrat detektiert werden. Durch die Einbindung der Metabolite, die durch biologische Prozesse im Körper entstehen, und den biologischen und chemischen TPs, eignet sich die Multi-Analyt-Methode auch zur Aufklärung von Abbaumechanismen in natürlichen Behandlungssystemen zur Wasserwiederverwendung, wozu es in der Literatur bisher nur wenige Angaben gibt. Im Rahmen der Dissertation wurden Proben aus zwei Systemen analysiert, einem im Pilotmaßstab entwickelten oberirdischen sequenziellen Biofiltrationssystem (SBF) und einem großmaßstäblichen Bodenpassagen-System (SAT). Im SBF-System konnten hauptsächlich biologische Abbaumechanismen beobachtet werden, was durch die Entstehung biologischer TPs deutlich gezeigt wurde. Die Effizienz des Abbaus wurde dabei durch eine Zwischenbelüftung erhöht, die oxische Bedingungen hervorrief. Im SAT-System kam es zu einer Kombination von Bioabbau- und Sorptionsprozessen. Es wurde beobachtet, dass bei einigen biologisch abbaubaren Spurenstoffen ein geringerer Abbau erreicht wurde als im SBF-System, was auf unterschiedliche Redox-Bedingungen und eine andere mikrobielle Gemeinschaft zurückzuführen war. Als Vorteil des SAT-Systems gegenüber des SBF erwies sich die Sorptionsfähigkeit des natürlichen Bodens. Vor allem positiv geladene Spurenstoffe zeigten eine Entfernung aufgrund von ionischen Wechselwirkungen mit negativ geladenen Bodenpartikeln. Auf der Grundlage ihrer physikalisch-chemischen Eigenschaften bei Umgebungs-pH, ihres Entfernungsgrades in den untersuchten Systemen und ihres Vorkommens im einfließenden Wasser konnte eine Auswahl von prozessbasierten Indikatorsubstanzen vorgeschlagen werden. In den vorherigen Arbeiten wurde in Kläranlagenabläufen häufig ein Spurenstoff in erhöhten Konzentrationen nachgewiesen, der bisher wenig im Fokus der Umweltforschung stand: das Antidiabetikum Sitagliptin (STG). STG zeigt nur eine geringe Abbaubarkeit in biologischen Systemen. Daher wurde untersucht, inwieweit eine chemische Aufbereitung mittels Ozonung einen Abbau gewährleisten kann. STG weist in seiner Struktur ein aliphatisches primäres Amin als entscheidende Angriffsstelle für das Ozonmolekül auf. In der Literatur finden sich kaum Informationen zum Verhalten dieser funktionellen Gruppe während der Ozonung. Die in dieser Dissertation erzielten Ergebnisse können daher exemplarisch für andere Spurenstoffe mit Amingruppen herangezogen werden. Es zeigte sich eine pH-abhängige Abbaukinetik aufgrund der Protonierung des primären Amins bei niedrigen pH-Werten. Bei für die Umwelt und Kläranlagen typischen pH-Werten im Bereich 6 – 8 wies STG Abbaukinetiken mittels Ozon im Bereich 103 M-1s-1 auf, mit einem vollständigen Abbau kann allerdings erst bei deutlich höheren pH-Werten > 9 gerechnet werden. Die Transformation des primären Amins zu einer Nitro-Gruppe wurde als Hauptabbaumechanismus in der Ozonung identifiziert. Ebenfalls wurde die Entstehung weiterer TPs wie z.B. eines Diketons und Trifluoressigsäure (TFA) beobachtet. Untersuchungen an einer Pilotanlage, bei der die Ozonung unter realen Bedingungen mit dem Ablauf einer konventionellen Kläranlage durchgeführt wurde, bestätigte die Ergebnisse der Laboruntersuchungen: STG wurde auch bei einer hohen Ozondosis nicht vollständig entfernt und die Nitro-Verbindung erwies sich als Haupt-TP, das weder bei weiterer Ozonung noch in einer nachgeschalteten biologischen Behandlung abgebaut wurde. Es ist daher davon auszugehen, dass unter realen Bedingungen sowohl eine Restkonzentration an STG als auch das Haupt-TP sowie weitere TPs wie TFA im Ablauf einer Kläranlage bestehend aus konventioneller biologischer Aufreinigung, Ozonung und nachgeschalteter biologischer Aufreinigung auffindbar sind.

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Verfasserangaben:Nina Hermes
URN:urn:nbn:de:kola-21609
Untertitel (Englisch):Occurrence in wastewater treatment plants and removal by biological and chemical treatment
Gutachter:Wolfgang Imhof, Thomas A. Ternes
Dokumentart:Dissertation
Sprache:Englisch
Datum der Fertigstellung:19.02.2021
Datum der Veröffentlichung:19.02.2021
Veröffentlichende Institution:Universität Koblenz, Universitätsbibliothek
Titel verleihende Institution:Universität Koblenz, Fachbereich 3
Datum der Abschlussprüfung:03.02.2021
Datum der Freischaltung:19.02.2021
Freies Schlagwort / Tag:biofiltration; micropollutants; ozonation; soil aquifer treatment; trace organic chemicals; transformation products; wastewater treatment plant; water pollution; water reuse; water scarcity; water treatment
Seitenzahl:163, 33
Institute:Fachbereich 3 / Institut für Integrierte Naturwissenschaften / Institut für Integrierte Naturwissenschaften, Abt. Chemie
Lizenz (Deutsch):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG