• search hit 8 of 10
Back to Result List

Energy flux paths and air-water exchange in freshwater ecosystems

  • This thesis was motivated by the need to advance the knowledge on the variability and dynamics of energy fluxes in lakes and reservoirs, as well as about the physical processes that regulate the fluxes at both the air and water side of the air-water interface. In the first part, I re-examine how mechanical energy, resulting from its major source – the vertical wind energy flux - distributes into the various types of water motions, including turbulent flows and surface and internal waves. Although only a small fraction of the wind energy flux from the atmosphere is transferred to the water, it is crucial for physical, biogeochemical and ecological processes in lentic ecosystems. Based on extensive air- and water-side measurements collected at two small water bodies (< 10 km2), we estimated the energy fluxes and energy content in surface and in internal waves. Overall, the estimated energy fluxes and energy content agree well with results reported for larger water bodies, suggesting that the energetics driving the water motions in enclosed basins is similar, independently of the basin size. Our findings highlight the importance of the surface waves that receive the largest fraction of the wind energy flux, which strongly nonlinearly increases for wind speeds exceeding 3 m s-1. We found that the existing parameterization of the wave height as a function of wind speed and fetch length did not reproduce the measured wave amplitude in lakes. On average, the highest energy content was observed in basin-scale internal waves, together with high-frequency internal waves exhibiting seasonal variability and varies among the aquatic systems. During our analysis, we discovered the diurnal variability of the energy dissipation rates in the studied lake, suggesting biogenic turbulence generation, which appears to be a widespread phenomenon in lakes and reservoirs. In the second part of the thesis, I addressed current knowledge gaps related to the bulk transfer coefficients (also known as the drag coefficient, the Stanton number and the Dalton number), which are of a particular importance for the bulk estimation of the surface turbulent fluxes of momentum, sensible and latent heat in the atmospheric boundary layer. Their inaccurate representation may lead to significant errors in flux estimates, affecting, for example, the weather and climate predictions or estimations of the near-surface current velocities in lake hydrodynamic models. Although the bulk transfer coefficients have been extensively studied over the past several decades (mainly in marine and large-lake environments), there has been no systematic analysis of measurements obtained at lakes of different size. A significant increase of the transfer coefficients at low wind speeds (< 3 m s-1) has been observed in several studies, but, to date, it has remained unexplained. We evaluated the bulk transfer coefficients using flux measurements from 31 lakes and reservoirs. The estimates were generally within the range reported in previous studies for large lakes and oceans. All transfer coefficients increased substantially at low wind speeds, which was found to be associated with the presence of gusts and capillary waves (except the Dalton number). We found that the Stanton number is systematically higher than the Dalton number. This challenges the assumption made in the Bowen-ratio method, which is widely used for estimating evaporation rates from micrometeorological measurements. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended to consider variations in the drag coefficient and the Stanton number due to wind gustiness and capillary wave roughness while the Dalton number could be considered as constant at all wind speeds. In the third part of the thesis, I address the key drivers of the near-surface turbulence that control the gas exchange in a large regulated river. As all inland waters, rivers are an important natural source of greenhouse gases. The effects of the widespread alteration and regulation of river flow for human demands on gas exchange is largely unknown. In particular, the near-surface turbulence in regulated rivers has been rarely measured and its drivers have not been identified. While in lakes and reservoirs, near-surface turbulence is mainly related to atmospheric forcing, in shallow rivers and streams it is generated by bottom friction of the gravity-forced flow. The studied large regulated river represents a transition between these two cases. Atmospheric forcing and gravity were the dominant drivers of the near-surface turbulence for a similar fraction of the measurement period. Based on validated scalings, we derived a simple model for estimating the relative contributions of wind and bottom friction to near-surface turbulence in lotic ecosystems with different flow depths. Large diel variability in the near-surface energy dissipation rates due to flow regulation leads to the same variability in gas exchange. This suggests that estimates of gas fluxes from rivers are biased by measurements performed predominantly during daytime. In addition, the novelty in all the analyses described above is the use of the turbulent surface fluxes measured directly by the eddy-covariance technique – at the moment of writing, the most advanced method. Overall, this thesis is of a potential interest for a broad range of scientific disciplines, including limnology, micrometeorology and open channel hydraulics.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sofya Guseva
URN:urn:nbn:de:kola-23892
Referee:Andreas Lorke, Alfred Johny Wüest
Advisor:Andreas Lorke
Document Type:Doctoral Thesis
Language:English
Date of completion:2022/12/15
Date of publication:2022/12/15
Publishing institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Date of final exam:2022/10/07
Release Date:2022/12/15
Tag:Eddy-covariance; Energy fluxes; Hydrodynamics; Lakes; Limnology; Near-surface turbulence; Reservoirs; Transfer coefficients; Turbulence
GND Keyword:Energiefluss; Hydrodynamik; Limnologie; See; Stausee; Turbulenz
Number of pages:139 Seiten
First page:1
Last page:27
Comment:
Kumulative Dissertation
Institutes:Fachbereich 7 / Institut für Umweltwissenschaften
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG