• search hit 58 of 475
Back to Result List

Knowledge engineering for software languages and software technologies

  • For software engineers, conceptually understanding the tools they are using in the context of their projects is a daily challenge and a prerequisite for complex tasks. Textual explanations and code examples serve as knowledge resources for understanding software languages and software technologies. This thesis describes research on integrating and interconnecting existing knowledge resources, which can then be used to assist with understanding and comparing software languages and software technologies on a conceptual level. We consider the following broad research questions that we later refine: What knowledge resources can be systematically reused for recovering structured knowledge and how? What vocabulary already exists in literature that is used to express conceptual knowledge? How can we reuse the online encyclopedia Wikipedia? How can we detect and report on instances of technology usage? How can we assure reproducibility as the central quality factor of any construction process for knowledge artifacts? As qualitative research, we describe methodologies to recover knowledge resources by i.) systematically studying literature, ii.) mining Wikipedia, iii.) mining available textual explanations and code examples of technology usage. The theoretical findings are backed by case studies. As research contributions, we have recovered i.) a reference semantics of vocabulary for describing software technology usage with an emphasis on software languages, ii.) an annotated corpus of Wikipedia articles on software languages, iii.) insights into technology usage on GitHub with regard to a catalog of pattern and iv.) megamodels of technology usage that are interconnected with existing textual explanations and code examples.
  • Softwaresprachen und Technologien zu verstehen, die bei der Entwicklung einer Software verwendet werden, ist eine alltägliche Herausforderung für Software Engineers. Textbasierte Dokumentationen und Codebeispiele sind typische Hilfsmittel, die zu einem besseren Verständnis führen sollen. In dieser Dissertation werden verschiedene Forschungsansätze beschrieben, wie existierende Textpassagen und Codebeispiele identifiziert und miteinander verbunden werden können. Die Entdeckung solcher bereits existierender Ressourcen soll dabei helfen Softwaresprachen und Technologien auf einem konzeptionellen Level zu verstehen und zu vergleichen. Die Forschungsbeiträge fokussieren sich auf die folgenden Fragen, die später präzisiert werden. Welche existierenden Ressourcen lassen sich systematisch identifizieren, um strukturiertes Wissen zu extrahieren? Wie lassen sich die Ressourcen extrahieren? Welches Vokabular wird bereits in der Literatur verwendet, um konzeptionelles Wissen zur Struktur und Verwendung einer Software auszudrücken? Wie lassen sich Beiträge auf Wikipedia wiederverwenden? Wie können Codebeispiele zur Verwendung von ausgewählten Technologien auf GitHub gefunden werden? Wie kann ein Modell, welches Technologieverwendung repräsentiert, reproduzierbar konstruiert werden? Zur Beantwortung der Forschungsfragen werden qualitative Forschungsmethoden verwendet, wie zum Beispiel Literaturstudien. Des Weiteren werden Methoden entwickelt und evaluiert, um relevante Artikel auf Wikipedia, relevante Textpassagen in der Literatur und Codebeispiele auf GitHub zu verlinken. Die theoretischen Beiträge werden in Fallstudien evaluiert. Die folgenden wissenschaftlichen Beiträge werden dabei erzielt: i.) Eine Referenzsemantik zur Formalisierung von Typen und Relationen in einer sprachfokussierten Beschreibung von Software; ii.) Ein Korpus bestehend aus Wikipedia Artikeln zu einzelnen Softwaresprachen; iii) Ein Katalog mit textuell beschriebenen Verwendungsmustern einer Technologie zusammen mit Messergebnissen zu deren Frequenz auf GitHub; iv.) Technologiemodelle, welche sowohl mit verschiedenen existierenden Codebeispielen als auch mit Textpassagen verknüpft sind.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marcel Heinz
URN:urn:nbn:de:kola-22955
Advisor:Ralf Lämmel
Document Type:Doctoral Thesis
Language:English
Date of completion:2022/04/01
Date of publication:2022/05/10
Publishing institution:Universität Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz, Fachbereich 4
Date of final exam:2021/09/14
Release Date:2022/05/10
Tag:Knowledge; Mining; Ontology; Software Language; Software Technology
Number of pages:vi, 149
Institutes:Fachbereich 4 / Institut für Informatik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
BKL-Classification:54 Informatik / 54.52 Software engineering
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG