The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 32
Back to Result List

Managing and using provenance in the semantic web

  • The Web contains some extremely valuable information; however, often poor quality, inaccurate, irrelevant or fraudulent information can also be found. With the increasing amount of data available, it is becoming more and more difficult to distinguish truth from speculation on the Web. One of the most, if not the most, important criterion used to evaluate data credibility is the information source, i.e., the data origin. Trust in the information source is a valuable currency users have to evaluate such data. Data popularity, recency (or the time of validity), reliability, or vagueness ascribed to the data may also help users to judge the validity and appropriateness of information sources. We call this knowledge derived from the data the provenance of the data. Provenance is an important aspect of the Web. It is essential in identifying the suitability, veracity, and reliability of information, and in deciding whether information is to be trusted, reused, or even integrated with other information sources. Therefore, models and frameworks for representing, managing, and using provenance in the realm of Semantic Web technologies and applications are critically required. This thesis highlights the benefits of the use of provenance in different Web applications and scenarios. In particular, it presents management frameworks for querying and reasoning in the Semantic Web with provenance, and presents a collection of Semantic Web tools that explore provenance information when ranking and updating caches of Web data. To begin, this thesis discusses a highly exible and generic approach to the treatment of provenance when querying RDF datasets. The approach re-uses existing RDF modeling possibilities in order to represent provenance. It extends SPARQL query processing in such a way that given a SPARQL query for data, one may request provenance without modifying it. The use of provenance within SPARQL queries helps users to understand how RDF facts arederived, i.e., it describes the data and the operations used to produce the derived facts. Turning to more expressive Semantic Web data models, an optimized algorithm for reasoning and debugging OWL ontologies with provenance is presented. Typical reasoning tasks over an expressive Description Logic (e.g., using tableau methods to perform consistency checking, instance checking, satisfiability checking, and so on) are in the worst case doubly exponential, and in practice are often likewise very expensive. With the algorithm described in this thesis, however, one can efficiently reason in OWL ontologies with provenance, i.e., provenance is efficiently combined and propagated within the reasoning process. Users can use the derived provenance information to judge the reliability of inferences and to find errors in the ontology. Next, this thesis tackles the problem of providing to Web users the right content at the right time. The challenge is to efficiently rank a stream of messages based on user preferences. Provenance is used to represent preferences, i.e., the user defines his preferences over the messages' popularity, recency, etc. This information is then aggregated to obtain a joint ranking. The aggregation problem is related to the problem of preference aggregation in Social Choice Theory. The traditional problem formulation of preference aggregation assumes a I fixed set of preference orders and a fixed set of domain elements (e.g. messages). This work, however, investigates how an aggregated preference order has to be updated when the domain is dynamic, i.e., the aggregation approach ranks messages 'on the y' as the message passes through the system. Consequently, this thesis presents computational approaches for online preference aggregation that handle the dynamic setting more efficiently than standard ones. Lastly, this thesis addresses the scenario of caching data from the Linked Open Data (LOD) cloud. Data on the LOD cloud changes frequently and applications relying on that data - by pre-fetching data from the Web and storing local copies of it in a cache - need to continually update their caches. In order to make best use of the resources (e.g., network bandwidth for fetching data, and computation time) available, it is vital to choose a good strategy to know when to fetch data from which data source. A strategy to cope with data changes is to check for provenance. Provenance information delivered by LOD sources can denote when the resource on the Web has been changed last. Linked Data applications can benefit from this piece of information since simply checking on it may help users decide which sources need to be updated. For this purpose, this work describes an investigation of the availability and reliability of provenance information in the Linked Data sources. Another strategy for capturing data changes is to exploit provenance in a time-dependent function. Such a function should measure the frequency of the changes of LOD sources. This work describes, therefore, an approach to the analysis of data dynamics, i.e., the analysis of the change behavior of Linked Data sources over time, followed by the investigation of different scheduling update strategies to keep local LOD caches up-to-date. This thesis aims to prove the importance and benefits of the use of provenance in different Web applications and scenarios. The exibility of the approaches presented, combined with their high scalability, make this thesis a possible building block for the Semantic Web proof layer cake - the layer of provenance knowledge.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Renata Queiroz Dividino
Referee:Steffen Staab
Advisor:York Sure-Vetter, Luc Moreau
Document Type:Doctoral Thesis
Date of completion:2017/06/27
Date of publication:2017/07/03
Publishing institution:Universität Koblenz-Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Date of final exam:2017/12/14
Release Date:2017/07/03
Number of pages:XIII, 205
Institutes:Fachbereich 4 / Institute for Web Science and Technologies
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG