The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 28 of 50
Back to Result List

The Epistemic Dynamic Model: Developing a Theory of Tagging Systems

Das Epistemic Dynamic Model: Entwicklung einer Theorie über Tagging-Systeme

  • Tagging systems are intriguing dynamic systems, in which users collaboratively index resources with the so-called tags. In order to leverage the full potential of tagging systems, it is important to understand the relationship between the micro-level behavior of the individual users and the macro-level properties of the whole tagging system. In this thesis, we present the Epistemic Dynamic Model, which tries to bridge this gap between the micro-level behavior and the macro-level properties by developing a theory of tagging systems. The model is based on the assumption that the combined influence of the shared background knowledge of the users and the imitation of tag recommendations are sufficient for explaining the emergence of the tag frequency distribution and the vocabulary growth in tagging systems. Both macro-level properties of tagging systems are closely related to the emergence of the shared community vocabulary. rnrnWith the help of the Epistemic Dynamic Model, we show that the general shape of the tag frequency distribution and of the vocabulary growth have their origin in the shared background knowledge of the users. Tag recommendations can then be used for selectively influencing this general shape. In this thesis, we especially concentrate on studying the influence of recommending a set of popular tags. Recommending popular tags adds a feedback mechanism between the vocabularies of individual users that increases the inter-indexer consistency of the tag assignments. How does this influence the indexing quality in a tagging system? For this purpose, we investigate a methodology for measuring the inter-resource consistency of tag assignments. The inter-resource consistency is an indicator of the indexing quality, which positively correlates with the precision and recall of query results. It measures the degree to which the tag vectors of indexed resources reflect how the users perceive the similarity between resources. We argue with our model, and show it with a user experiment, that recommending popular tags decreases the inter-resource consistency in a tagging system. Furthermore, we show that recommending the user his/her previously used tags helps to increase the inter-resource consistency. Our measure of the inter-resource consistency complements existing measures for the evaluation and comparison of tag recommendation algorithms, moving the focus to evaluating their influence on the indexing quality.
  • Tagging-Systeme sind faszinierende dynamische Systeme in denen Benutzer kollaborativ Ressourcen mit sogenannten Tags indexieren. Um das volle Potential von Tagging-Systemen nutzen zu können ist es wichtig zu verstehen, wie sich das Verhalten der einzelnen Benutzer auf die Eigenschaften des Gesamtsystems auswirkt. In der vorliegenden Arbeit wird das Epistemic Dynamic Model präsentiert. Es schlägt eine Brücke zwischen dem Benutzerverhalten und den Systemeigenschaften. Das Modell basiert auf der Annahme, dass der Einfluss des gemeinsamen Hintergrundwissens der Benutzer und der Imitation von Tag-Vorschlägen ausreicht, um die Entstehung der Häufigkeitsverteilungen der Tags und des Wachstums des Vokabulars zu erklären. Diese beiden Eigenschaften eines Tagging-Systems hängen eng mit der Entstehung eines gemeinsamen Vokabulars der Benutzer zusammen. Mit Hilfe des Epistemic Dynamic Models zeigen wir, dass die generelle Ausprägung der Tag-Häufigkeitsverteilungen und des Wachstums des Vokabulars ihren Ursprung in dem gemeinsamen Hintergrundwissen der Benutzer haben. Tag-Vorschläge können dann dazu genutzt werden, um gezielt diese generelle Ausprägung zu beeinflussen. In der vorliegenden Arbeit untersuchen wir hauptsächlich den Einfluss der von Vorschlägen populärer Tags ausgeht. Populäre Tags sorgen für einen Feedback-Mechanismus zwischen den Vokabularen der einzelnen Benutzer, der die Inter-Indexer Konsistenz der Tag-Zuweisungen erhöht. Wie wird aber dadurch die Indexierungsqualität in Tagging-Systemen beeinflusst? Zur Klärung dieser Frage untersuchen wir eine Methode zur Messung der Inter-Ressourcen Konsistenz der Tag-Zuweisungen. Die Inter-Ressourcen Konsistenz korreliert positiv mit der Indexierungsqualität, und mit der Trefferquote und der Genauigkeit von Suchanfragen an das System. Sie misst inwieweit die Tag-Vektoren die durch Benutzer wahrgenommene Ähnlichkeit der jeweiligen Ressourcen widerspiegeln. Wir legen mit Hilfe unseres Modell dar, und zeigen es auch mit Hilfe eines Benutzerexperiments, dass populäre Tags zu einer verringerten Inter-Ressourcen Konsistenz führen. Des Weiteren zeigen wir, dass die Inter-Ressourcen Konsistenz erhöht wird, wenn dem Benutzer das eigene, bisher genutzte Vokabular vorgeschlagen wird. Unsere Methode zur Messung der Inter-Ressourcen Konsistenz ergänzt bestehende Evaluationsmaße für Tag-Vorschlags-Algorithmen um den Aspekt der Indexierungsqualität.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Klaas Dellschaft
URN:urn:nbn:de:hbz:kob7-8607
Advisor:Steffen Staab
Document Type:Doctoral Thesis
Language:English
Date of completion:2013/02/01
Date of publication:2013/02/01
Publishing institution:Universität Koblenz-Landau, Campus Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Date of final exam:2013/01/30
Release Date:2013/02/01
Number of pages:xxii,173
Comment:
Dissertation plus Anlagen sind auf CD-ROM in der Bibliothek erhältlich (Signatur CD OPUS 860) !
Institutes:Fachbereich 4 / Institute for Web Science and Technologies
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG