• Treffer 8 von 9
Zurück zur Trefferliste

Insight into physicochemical structure of soil organic matter by cation interaction and nanothermal properties

Einblick in die physikalisch-chemische Struktur der organischen Bodensubstanz durch Untersuchung von Kationenwechselwirkungen und nanothermischen Eigenschaften

  • Structure of soil organic matter (SOM) is a hot topic of discussion among scientific community for several decades. The mostly discussed models, among many, are polymer model and supramolecular model. While the former considers SOM as macromolecules consisting of amorphous and crystalline domains, the latter explains SOM as a physicochemical entity dominated by weak hydrophobic and H-bond interactions in the secondary level, which holds individual molecules of primary structure together. The weak forces in secondary level impart characteristic mobility of SOM. Very important consequence of this multidimensional formulation is that physicochemical structure plays a crucial role in most biogeochemical functions of SOM, apart from the chemical composition. Recently introduced concept of cation and water molecule mediated bridges between OM molecular segments (CaB and WaMB, respectively) evolved from physicochemical understanding of SOM structure. Even though several indirect evidences were produced for CaB and WaMB during last years, no clear-cut understanding of these processes has been achieved yet. Experimental difficulty due to overlapping effects of equally important CaB-governing parameters such a pH and competing cations raises huge challenge in investigating CaB-related influences. This thesis, therefore, aims to validate an experimental set-up for inducing CaB within OM structures and assessing it from various chemical and physicochemical aspects. The method involved removal of omnipresent cations and adjustment of pH before cation addition. This helped to separate pH effects and cation effects. Based on results obtained on two different types of organic matter, it can be deduced that multivalent cations can cross-link SOM, given that functional group density of the SOM material is enough for the functional groups to be arranged in sufficient spatial proximity to each other. Physicochemical structural reorganisation during aging causes formation of more and/or stronger CaB and WaMB. As for inducing CaB directly after cation treatment, cationic size and valency were found determinant also for aging effect. A strongly cross-linked system in the beginning is less vulnerable to structural changes and undergoes aging with lower intensity, than an initially weakly cross-linked system. Responsible for the structural changes is, the inherent mobility of SOM within its physicochemical assemblage. Thus the information on structural requirement of CaB and its consequences on OM matrix rigidity will help to obtain insight into the physicochemical SOM structure. Additionally, organic matter quality (assessed by thermal analysis) and pore structure of SOM formed in a set of artificial soils showed that mineral materials are important for the chemical nature of SOM molecules, but not for the physical structure of organo-mineral associations, at least after several months of SOM development. Furthermore, nanothermal analysis using atomic force microscopy (AFM-nTA) was implemented in soils for the first time to reveal nanoscale thermal properties and their spatial distribution in nano- and micrometer scales. This helped to identify physicochemical processes, such as disruption of WaMB, in low-organic soils, in which bulk methods fail due to their low sensitivity. Further, various types of materials constituting in soils were distinguished with high resolution by advanced application of the method, in combination with other AFM parameters. Attempts were done to identify various materials, with the usage of defined test materials. Above all, the method is potent to reveal microspatial heterogeneity on sample surfaces, which could help understanding process-relevant hotspots, for example. This thesis thus contributes to the scientific understanding on physicochemical structural dynamics via cross-linking by cations and via nanoscale thermal properties. Direct investigation on CaB demonstrated here will potentially help making a big leap in knowledge about the interaction. The observed aging effects add well to the understanding of supramolecular consideration of SOM. By introducing nanothermal analysis to the field of soil science, it is made possible to face the problem of heterogeneity and spatial distribution of thermal characteristics. Another important achievement of AFM-nTA is that it can be used to detect physicochemical processes, which are of low intensity.
  • Die Struktur der organischen Bodensubstanz (OBS) ist ein seit Jahrzehnten unter Wissenschaftlern viel diskutiertes Thema. Die wichtigsten Modelle sind unter anderem das Polymer Modell und das Supramolekulare Modell. Während ersteres die OBS als Makromoleküle betrachtet, die amorphe und kristalline Bereiche enthält, erklärt letzteres die OBS als physikochemische Verbindung in der durch schwache hydrophobe Wechselwirkungen und Wasserstoffbrückenbindungen individuelle Moleküle primärer Struktur in einer Sekundärstruktur zusammengehalten werden. Die schwachen Wechselwirkungen innerhalb der Sekundärstruktur gewähren der OBS ihre charakteristische Mobilität. Eine wichtige Konsequenz dieses mehrdimensionalen Aufbaus ist es, dass abgesehen von der chemischen Zusammensetzung, die physikochemische Struktur der OBS eine entscheidende Rolle für ihre biogeochemischen Funktionen spielt. Aus diesem physikochemischen Verständnis der OBS Struktur heraus entstand das kürzlich eingeführte Konzept der durch Kationen und Wassermoleküle vermittelten Brücken zwischen OBS Segmenten (CaB und WaMB). Obwohl es in den letzten Jahren einige indirekte Anhaltspunkte für die Ausbildung von CaB und WaMB gab, gibt es bis heute kein klar umrissenes Verständnis di eser Prozesse. Experimentelle Probleme aufgrund sich überlagernder Effekte von wichtigen ebenfalls CaB beeinflussenden Parametern, wie pH und der Konzentration konkurrierender Kationen, erschweren die Untersuchung der CaB-bezogenen Einflüsse. Daher zielte diese Arbeit darauf ab, eine experimentelle Herangehensweise zu entwickeln um CaB innerhalb der OBS zu erzeugen und diese hinsichtlich verschiedener chemischer und physikochemischer Aspekte zu beurteilen. Dazu wurden zuerst die in den Proben schon vorhandenen Kationen entfernt und der pH Wert definiert eingestellt, bevor die Proben erneut mit bestimmten Kationen beladen wurden. So konnten pH- und Kationen-Effekte voneinander getrennt beobachtet werden. Aus den Ergebnissen, die mit zwei unterschiedlichen Typen organischer Substanz erzielt worden sind, kann folgender Rückschluss gezogen werden: Unter der Voraussetzung, dass die Dichte der funktionellen Gruppen in der OBS hoch genug ist, so dass diese in ausreichender räumlicher Nähe zueinander arrangiert sind, können Kationen die OBS quervernetzen. Eine physikochemische strukturelle Umorientierung findet auch in Alterungsprozessen statt, die die Bildung von mehr und/oder stärkeren CaB und WaMB verursachen. Kationengröße und "ladung bestimmen sowohl die Erzeugung von CaB direkt bei der Kationenbehandlung, als auch die Effekte der Alterungsprozesse. Ein anfänglichrnstärker quervernetztes System ist weniger anfällig für strukturelle Änderungen und unterliegt weniger starken Alterungsprozessen als ein anfänglich schwächer quervernetztes. Verantwortlich für die strukturellen Veränderungen ist die der OBS innewohnende Mobilität innerhalb ihres physikochemischen Verbundes. Information über die strukturellen Voraussetzungen zur Bildung von CaB und deren Konsequenzen für die Matrixstabilität der OBS können helfen, Einblicke in die physikochemische Struktur der OBS zu erhalten. Außerdem zeigten die Qualität der OBS (bestimmt mithilfe thermischer Analytik) und deren Porenstruktur, die sich in einer Reihe von künstlich hergestellten Böden nach einigen Monaten der OBS Entwicklung gebildet hatten, dass die mineralischen Ausgangsmaterialien zwar eine Bedeutung für die chemische Natur der OBS Moleküle hatten, nicht jedoch für die physikalische Struktur der organisch-mineralischen Verbindungen. In der vorliegenden Arbeit wurde außerdem erstmals die nanothermische Analyse mithilfe der Rasterkraftmikroskopie (AFM-nTA) für Boden eingesetzt, um thermische Eigenschaften und deren räumliche Verteilung im Nano- und Mikrometerbereich zu erfassen. Diese Methode ermöglichte es, physikochemische Prozesse, wie z.B. das Aufbrechen von WaMB in humusarmen Böden zu identifizieren, bei denen herkömmliche Methoden aufgrund zu niedriger Empfindlichkeit scheiterten. Weiterhin konnten durch eine verbesserte Anwendung der Methode und die Kombination mit anderen AFM-Parametern einige in Böden vorkommende Materialien in hoher räumlicher Auflösung unterschieden werden. Durch die Verwendung definierter Testmaterialien wurde versucht, diese Bodenmaterialien zu identifizieren. Das größte Potential dieser Methode liegt allerdings darin, die mikroskopische Heterogenität von Probenoberflächen zu quantifizieren, was z.B. dabei helfen kann, Prozess-relevante Hotspots aufzudecken. Durch die Einbindung der AFM-nTA Technologie trägt die vorliegende Arbeit zum wissenschaftlichen Verständnis der Änderungen der physikochemischer Struktur der OBS durch Kationenquervernetzung bei. Die hier demonstrierte direkte Untersuchung der CaB kann möglicherweise zu einem großen Wissenssprung hinsichtlich dieser Wechselwirkungen verhelfen. Der beobachtete Alterungsprozess ergänzt gut das supramolekularen Verständnis der OBS. Die Einführung der nanothermischen Analyse in die Bodenkunde ermöglicht es, dem Problem der Heterogenität und der räumlichen Verteilung thermischer Eigenschaften zu begegnen. Ein anderer wichtiger Erfolg der AFM-nTA ist, dass sie genutzt werden kann um physikochemische Prozesse sehr geringer Intensität zu detektieren.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Yumana Kunhi Mouvenchery
URN:urn:nbn:de:hbz:lan1-9259
Betreuer:Gabriele Ellen Schaumann
Dokumentart:Dissertation
Sprache:Englisch
Datum der Fertigstellung:26.08.2013
Datum der Veröffentlichung:26.08.2013
Veröffentlichende Institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Titel verleihende Institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Datum der Abschlussprüfung:20.08.2013
Datum der Freischaltung:26.08.2013
Freies Schlagwort / Tag:Boden; Kation-Brücken; Kationen; Organische Bodensubstanz; Torf
Cations; cation bridges; peat; soil; soil organic matter
GND-Schlagwort:Bodenchemie; Bodenökologie; NMR-Spektroskopie; Umweltwissenschaften
Seitenzahl:172 Seiten
Institute:Fachbereich 7 / Fachbereich 7
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Lizenz (Deutsch):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG