• search hit 1 of 105
Back to Result List

On Structural Aspects of Unconnectedness in Knowledge and Social Networks

Strukturelle Aspekte von Unverbundenheit in Wissensnetzwerken und Sozialen Netzwerken

  • Through the increasing availability of access to the web, more and more interactions between people take place in online social networks, such as Twitter or Facebook, or sites where opinions can be exchanged. At the same time, knowledge is made openly available for many people, such as by the biggest collaborative encyclopedia Wikipedia and diverse information in Internet forums and on websites. These two kinds of networks - social networks and knowledge networks - are highly dynamic in the sense that the links that contain the important information about the relationships between people or the relations between knowledge items are frequently updated or changed. These changes follow particular structural patterns and characteristics that are far less random than expected. The goal of this thesis is to predict three characteristic link patterns for the two network types of interest: the addition of new links, the removal of existing links and the presence of latent negative links. First, we show that the prediction of link removal is indeed a new and challenging problem. Even if the sociological literature suggests that reasons for the formation and resolution of ties are often complementary, we show that the two respective prediction problems are not. In particular, we show that the dynamics of new links and unlinks lead to the four link states of growth, decay, stability and instability. For knowledge networks we show that the prediction of link changes greatly benefits from the usage of temporal information; the timestamp of link creation and deletion events improves the prediction of future link changes. For that, we present and evaluate four temporal models that resemble different exploitation strategies. Focusing on directed social networks, we conceptualize and evaluate sociological constructs that explain the formation and dissolution of relationships between users. Measures based on information about past relationships are extremely valuable for predicting the dissolution of social ties. Hence, consistent for knowledge networks and social networks, temporal information in a network greatly improves the prediction quality. Turning again to social networks, we show that negative relationship information such as distrust or enmity can be predicted from positive known relationships in the network. This is particularly interesting in networks where users cannot label their relationships to other users as negative. For this scenario we show how latent negative relationships can be predicted.
  • Viele Menschen kommunizieren und interagieren zunehmend über soziale Online-Netzwerke wie Twitter oder Facebook, oder tauschen Meinungen mit Freunden oder auch Fremden aus. Durch die zunehmende Verfügbarkeit des Internets wird auch Wissen für immer mehr Menschen offen verfügbar gemacht. Beispiele hierfür sind die Online-Enzyklopädie Wikipedia oder auch die vielfältigen Informationen in diversen Webforen und Webseiten. Diese zwei Netzwerkkategorien - Soziale Netzwerke und Wissensnetzwerke - verändern sich sehr schnell. Fast sekündlich befreunden sich neue Nutzer in sozialen Netzwerken und Wikipedia-Artikel werden überarbeitet und neu mit anderen Artikeln verlinkt. Diese Änderungen an der Verlinkung von Menschen oder Wissensbausteinen folgen bestimmten strukturellen Regeln und Charakteristiken, die weit weniger zufällig sind als man zunächst annehmen würde. Das Ziel dieser Doktorarbeit ist es, drei charakteristische Verlinkungsmuster in diesen zwei Netzwerkkategorien vorherzusagen: das Hinzufügen von neuen Verlinkungen, das Entfernen bestehender Verbindungen und das Vorhandensein von latent negativen Verlinkungen. Zunächst widmen wir uns dem relativ neuen Problem der Vorhersage von Entlinkungen in einem Netzwerk. Hierzu gibt es zahlreiche soziologische Vorarbeiten, die nahelegen, dass die Ursachen zur Entstehung von Beziehungsabbrüchen komplementär zu den Gründen für neue Beziehungen sind. Obwohl diese Arbeiten eine strukturelle Ähnlichkeit der Probleme vermuten lassen, zeigen wir, dass beide Probleme nicht komplementär zueinander sind. Insbesondere zeigen wir, dass das dynamische Zusammenspiel von neuen Verlinkungen und Entlinkungen in Netzwerken durch die vier Zustände des Wachstums, des Zerfalls, der Stabilität und der Instabilität charakterisiert ist. Für Wissensnetzwerke zeigen wir, dass die Vorhersagbarkeit von Entlinkungen deutlich verbessert wird, wenn zeitliche Informationen wie der Zeitpunkt von einzelnen Netzwerkergeignissen mit genutzt werden. Wir präsentieren und evaluieren hierfür insgesamt vier verschiedene Strategien, die von zeitlichen Informationen Gebrauch machen. Für soziale Netzwerke analysieren wir, welche strukturellen Einflussfaktoren zur Entstehung und Löschung von Links zwischen Benutzern in Twitter indikativ sind. Auch hier zeigt sich, dass zeitliche Informationen darüber, dass eine Kante schon einmal gelöscht wurde, die Vorhersagbarkeit von Verlinkungen und insbesondere Entlinkungen enorm verbessert. Im letzten Teil der Doktorarbeit zeigen wir, wie negative Beziehungen (beispielsweise Misstrauen oder Feindschaft) aus positiven Beziehungen zwischen Nutzern (etwa Vertrauen und Freundschaft) abgeleitet werden können. Dies ist besonders relevant für Netzwerke, in denen nur positive Beziehungen kenntlich gemacht werden können. Für dieses Szenario zeigen wir, wie latent negative Beziehungen zwischen Nutzern dennoch erkannt werden können.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Julia Perl
URN:urn:nbn:de:hbz:kob7-10765
Referee:Steffen Staab, Markus Strohmaier
Document Type:Doctoral Thesis
Language:English
Date of completion:2014/12/16
Date of publication:2014/12/16
Publishing institution:Universität Koblenz-Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Date of final exam:2014/12/05
Release Date:2014/12/16
Tag:Latent Negative; Link Prediction; Unlink Prediction
GND Keyword:Maschinelles Lernen
Number of pages:XVII, 134
Institutes:Fachbereich 4 / Institute for Web Science and Technologies
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG