• search hit 3 of 107
Back to Result List

A meta- and risk-analysis of global insecticide contamination of agricultural surface waters

  • Global crop production increased substantially in recent decades due to agricultural intensification and expansion and today agricultural areas occupy about 38% of Earth’s terrestrial surface - the largest use of land on the planet. However, current high-intensity agricultural practices fostered in the context of the Green Revolution led to serious consequences for the global environment. Pesticides, in particular, are highly biologically active substances that can threaten the ecological integrity of aquatic and terrestrial ecosystems. Although the global pesticide use increases steadily, our field-data based knowledge regarding exposure of non-target ecosystems such as surface waters is very restricted. Available studies have by now been limited to spatially restricted geographical areas or had rather specific objectives rendering the extrapolation to larger spatial scales questionable. Consequently, this thesis evaluated based on four scientific publications the exposure, effects, and regulatory implications of particularly toxic insecticides` concentrations detected in global agricultural surface waters. FOCUS exposure modelling was used to characterise the highly specific insecticide exposure patterns and to analyse the resulting implications for both monitoring and risk assessment (publication I). Based on more than 200,000 scientific database entries, 838 peer-reviewed studies finally included, and more than 2,500 sites in 73 countries, the risks of agricultural insecticides to global surface waters were analysed by means of a comprehensive meta-analysis (publication II). This meta-analysis evaluated whether insecticide field concentrations exceed legally accepted regulatory threshold levels (RTLs) derived from official EU and US pesticide registration documents and, amongst others, how risks depend on insecticide development over time and stringency of environmental regulation. In addition, an in-depth analysis of the current EU pesticide regulations provided insights into the level of protection and field relevance of highly elaborated environmental regulatory risk assessment schemes (publications III and IV). The results of this thesis show that insecticide surface water exposure is characterized by infrequent and highly transient concentration peaks of high ecotoxicological relevance. We thus argue in publication I that sampling based on regular intervals is inadequate for the detection of insecticide surface water concentrations and that traditional risk assessment concepts based on all insecticide concentrations including non-detects lead to severely biased results and critical underestimations of risks. Based on these considerations, publication II demonstrates that out of 11,300 measured insecticide concentrations (MICs; i.e., those actually detected and quantified), 52.4% (5,915 cases; 68.5%) exceeded the RTL for either water (RTLSW) or sediments. This indicates a substantial risk for the biological integrity of global water resources as additional analyses on pesticide effects in the field clearly evidence that the regional aquatic biodiversity is reduced by approximately 30% at pesticide concentrations equalling the RTLs. In addition, publication II shows that there is a complete lack of scientific monitoring data for ~90% of global cropland and that both the actual insecticide contamination of surface waters and the resulting ecological risks are most likely even greater due to, for example, inadequate sampling methods employed in the studies and the common occurrence of pesticide mixtures. A linear model analysis identified that RTLSW exceedances depend on the catchment size, sampling regime, sampling date, insecticide substance class, and stringency of countries` environmental regulations, as well as on the interactions of these factors. Importantly, the risks are significantly higher for newer-generation insecticides (i.e., pyrethroids) and are high even in countries with stringent environmental regulations. Regarding the latter, an analysis of the EU pesticide regulations revealed critical deficiencies and the lack of protectiveness and field-relevance for current presumed highly elaborated FOCUS exposure assessment (publication IV) and overall risk assessment schemes (publication III). Based on these findings, essential risk assessment amendments are proposed. In essence, this thesis analyses the agriculture–environment linkages for pesticides at the global scale and it thereby contributes to a new research frontier in global ecotoxicology. The overall findings substantiate that agricultural insecticides are potential key drivers for the global freshwater biodiversity crisis and that the current regulatory risk assessment approaches for highly toxic anthropogenic chemicals fail to protect the global environment. This thesis provides an integrated view on the environmental side effects of global high-intensity agriculture and alerts that beside worldwide improvements to current pesticide regulations and agricultural pesticide application practices, the fundamental reformation of conventional agricultural systems is urgently needed to meet the twin challenges of providing sufficient food for a growing human population without destroying the ecological integrity of global ecosystems essential to human existence.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sebastian Stehle
URN:urn:nbn:de:kola-12125
Advisor:Ralf Schulz, Ralf B. Schäfer, Pierre Mineau
Document Type:Doctoral Thesis
Language:English
Date of completion:2015/12/07
Date of publication:2015/12/08
Publishing institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Date of final exam:2015/12/04
Release Date:2015/12/08
Number of pages:(186 Seiten in getrennter Zählung)
Institutes:Fachbereich 7
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG