• search hit 8 of 99
Back to Result List

Analyses of engineered nanoparticles and colloids at sediment water interfaces

  • Within aquatic environments sediment water interfaces (SWIs) are the most important areas concerning exchange processes between the water body and the sediment. These spatially restricted regions are characterized by steep biogeochemical gradients that determine the speciation and fate of natural or artificial substances. Apart from biological mediated processes (e.g., burrowing organisms, photosynthesis) the determining exchange processes are diffusion or a colloid-mediated transport. Hence, methods are required enabling to capture the fine scale structures at the boundary layer and to distinguish between the different transport pathways. Regarding emerging substances that will probably reach the aquatic environment engineered nanomaterials (ENMs) are of great concern due to their increased use in many products and applications. Since they are determined based on their size (<100 nm) they include a variety of different materials behaving differently in the environment. Once released, they will inevitable mix with naturally present colloids (< 1 μm) including natural nanomaterials. With regard to existing methodological gaps concerning the characterization of ENMs (as emerging substances) and the investigation of SWIs (as receiving environmental compartments), the aim of this thesis was to develop, validate and apply suitable analytical tools. The challenges were to i) develop methods that enable a high resolution and low-invasive sampling of sediment pore water. To ii) develop routine-suitable methods for the characterization of metal-based engineered nanoparticles and iii) to adopt and optimize size-fractionation approaches for pore water samples of sediment depth profiles to obtain size-related information on element distributions at SWIs. Within the first part, an available microprofiling system was combined with a novel micro sampling system equipped with newly developed sample filtration-probes. The system was thoroughly validated and applied to a freshwater sediment proving the applicability for an automatic sampling of sediment pore waters in parallel to microsensor measurements. Thereby, for the first time multi-element information for sediment depth profiles were obtained at a millimeter scale that could directly be related to simultaneously measured sediment parameters. Due to the expected release of ENMs to the environment the aim was to develop methods that enable the investigation of fate and transport of ENMs at sediment water interfaces. Since standardized approaches are still lacking, methods were developed for the determination of the total mass concentration and the determination of the dissolved fraction of (nano)particle suspensions. Thereby, validated, routine suitable methods were provided enabling for the first time a routine-suitable determination of these two, among the most important properties regarding the analyses of colloidal systems, also urgently needed as a basis for the development of appropriate (future) risk assessments and regulatory frameworks. Based on this methodological basis, approaches were developed enabling to distinguish between dissolved and colloidal fractions of sediment pore waters. This made it possible for the first time to obtain fraction related element information for sediment depth profiles at a millimeter scale, capturing the fine scale structures and distinguishing between diffusion and colloid-mediated transport. In addition to the research oriented parts of this thesis, questions concerning the regulation of ENPs in the case of a release into aquatic systems were addressed in a separate publication (included in the Appendix) discussing the topic against the background of the currently valid German water legislation and the actual state of the research.
  • In der aquatischen Umwelt stellen Wasser-Sediment-Grenzschichten (WSG) die wichtigsten Bereiche bezüglich der Austauschprozesse zwischen dem Wasserkörper und dem Sediment dar. Diese räumlich begrenzten Regionen sind durch starke biogeochemische Gradienten charakterisiert, die die Speziierung und den Verbleib natürlicher und artifizielle Substanzen maßgeblich bestimmen. Abgesehen von biologischen Prozessen (z.B. grabende Organismen oder Photosynthese) ist der Austausch zwischen Wasser und Sediment von Diffusion oder Kolloid-gesteuerten Transport bestimmt. Dies erfordert Methoden, die es ermöglichen, die feinen Strukturen der Grenzschichten abzubilden und zwischen den unterschiedlichen Prozessen zu unterscheiden. Hinsichtlich neu entwickelter Substanzen, die voraussichtlich in die aquatische Umwelt gelangen werden, sind artifizielle Nanomaterialien (engineered nanomaterials; ENMs) aufgrund ihrer zunehmenden Nutzung in Produkten und Anwendungen von großer Relevanz. Da sie auf der Grundlage ihrer Größe definiert werden (<100 nm), umfassen sie eine Vielzahl verschiedenster Materialien mit unterschiedlichem Verhalten in der Umwelt. Erreichen sie aquatische Systeme, mischen sie sich mit natürlich vorkommenden Kolloiden (<1 μm), die nanoskalige Partikel beinhalten. Ausgehend von existierenden methodischen Lücken bezüglich der Charakterisierung von ENMs (als neu aufgekommene Substanzen) und WSG (als betroffene Umweltkompartimente) war das Ziel der vorliegenden Dissertation, die Entwicklung, Validierung und Anwendung einer geeigneten analytischen Basis, um ENMs an WSG untersuchen zu können. Die Herausforderungen lagen dabei in i) der Entwicklung von Methoden, die eine räumlich hochaufgelöste Beprobung von Sedimentporen-wasser erlauben. ii) Der Bereitstellung routinetauglicher Methoden zur Charakterisierung metall-basierter ENMs und iii) der Entwicklung von Methoden zur Größenfraktionierung von Porenwässern, um größenbezogene Elementverteilungsmustern an WSG erhalten zu können. Im ersten Teil erfolgte die Entwicklung von Filter-Probenahmesonden, die in ein neuartiges Probenahmesystem integriert wurden, welches mit einem kommerziell verfügbaren Microprofiling-system kombiniert wurde (microprofiling micro sampling system; missy). Nach umfangreicher Validierung konnte in Experimenten die Tauglichkeit des missy für eine minimal-invasive und auto-matisierte Beprobung von Sedimentporenwasser bei parallelen Messungen mittels Mikrosensoren gezeigt werden. Es wurde somit erstmal möglich, im Millimetermaßstab Multielementinformationen für Sedimenttiefenprofile zu erhalten und diese in einen direkten Zusammenhang mit verschiedenen Sedimentparametern zu setzten.Aufgrund der zu erwartenden Freisetzung von ENMs in die Umwelt, war es das Ziel, Methoden bereitzustellen, die eine Untersuchung von Transportprozessen und dem Verbleib von ENMs an WSG ermöglichen. Da standardisierte Methoden noch immer fehlen, erfolgte die Entwicklung routinetauglicher Ansätze zur Bestimmung der Massenkonzentration sowie der gelösten Fraktion von ENM-Suspensionen. Somit konnten erstmals Methoden bereitgestellt werden, die eine routinetaugliche Bestimmung von zwei der wichtigsten Eigenschaften kolloidaler Systeme ermöglichen, die ebenfalls für die Entwicklung geeigneter Risikoabschätzungen und Regularien benötigt werden. Basierend auf dieser methodischen Grundlage erfolge die Entwicklung geeigneter Verfahren zur Bestimmung der gelösten und kolloidalen Fraktionen in Sedimentporenwässern. Dies ermöglichte es erstmalig, fraktionsbezogene Elementinformationen für Sedimenttiefenprofile in millimetergenauer Auflösung zu erhalten, was eine Unterscheidung zwischen Diffusion und kolloid-gesteuerten Transportprozessen gestattet. Zusätzlich zu den forschungsorientierten Teilen der vorgelegten Dissertation wurden in einer weiteren, als Anhang beigefügten Publikation (Appendix III) Fragen zu einem möglichen Eintrag nanoskaliger Stoffe in Oberflächengewässer vor dem Hintergrund des aktuell gültigen Deutschen Wasserrechtes adressiert.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anne-Lena Fabricius
URN:urn:nbn:de:kola-15936
Title Additional (German):Analyse artifizieller Nanopartikel und Kolloide an Wasser-Sediment-Grenzschichten
Referee:Thomas A. Ternes, Joachim Scholz, Torsten C. Schmidt
Document Type:Doctoral Thesis
Language:English
Date of completion:2018/02/16
Date of publication:2018/02/16
Publishing institution:Universität Koblenz-Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 3
Date of final exam:2017/12/21
Release Date:2018/02/16
Tag:Cloud Point Extraction; Größenfraktionierung; Kolloide; Metalle/Matalloide; Nanopartikel; Wasser-Sediment-Grenzschichten
Cloud Point Extraction; Kolloids; Metals/metalloids; Nanoparticles; Sediment-Water-Interfaces; Size-fractionation
Number of pages:VIII, 160
Institutes:Fachbereich 3 / Institut für Integrierte Naturwissenschaften / Institut für Integrierte Naturwissenschaften, Abt. Chemie
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG