
Living Book –
Deduction, Slicing and Interaction

Peter Baumgartner, Margret Groß-Hardt,
Alex Sinner

2/2003

Fachberichte
INFORMATIK

Universität Koblenz-Landau
Institut für Informatik, Rheinau 1, D-56075 Koblenz

E-mail: researchreports@infko.uni-koblenz.de ,

WWW: http://www.uni-koblenz.de/fb4/

Living Book –

Deduction, Slicing and Interaction

Peter Baumgartner, Margret Gross-Hardt, Alex Sinner

Universität Koblenz-Landau
Institut für Informatik

{peter,margret,sinner}@uni-koblenz.de

Abstract

The Living Book is a system for the management of personalized and sce-
nario specific teaching material. The main goal of the system is to support
the active, explorative and self-determined learning in lectures, tutorials and
self study. The Living Book includes a course on ’logic for computer sci-
entists’ with a uniform access to various tools like theorem provers and an
interactive tableau editor. It is routinely used within teaching undergradu-
ate courses at our university.

This paper describes the Living Book and the use of theorem prov-
ing technology as a core component in the knowledge management system
(KMS) of the Living Book. The KMS provides a scenario management com-
ponent where teachers may describe those parts of given documents that are
relevant in order to achieve a certain learning goal. The task of the KMS
is to assemble new documents from a database of elementary units called
’slices’ (definitions, theorems, and so on) in a scenario-based way (like ’I
want to prepare for an exam and need to learn about resolution’).

The computation of such assemblies is carried out by a model-generating
theorem prover for first-order logic with a default negation principle. Its
input consists of meta data that describe the dependencies between different
slices, and logic-programming style rules that describe the scenario-specific
composition of slices. Additionally, a user model is taken into account that
contains information about topics and slices that are known or unknown to
a student. A model computed by the system for such input then directly
specifies the document to be assembled.

This paper introduces the e-learning context we are faced with, motivates
our choice of logic and presents the newly developed calculus used in the
KMS.

1

2

1 Introduction

In the era of information technology, the need for new media concepts, like elec-
tronic books, has arisen. Despite the remarkable progress of electronic media,
providing high quality and state of the art educational material is still quite a
challenge. Printed books are still the backbone of current teaching technology,
and printed books will certainly not disappear entirely in the near future. Their
strengths rely on excellent graphic resolution and print quality as well as low
prices and extreme portability. Furthermore, it is easy to browse a book to get
a first impression on a subject as stated e.g. in [12].

However, shortcomings of printed books become obvious when focusing on
search functionality or on explorative and creative work with learning material.
Especially in (higher) education, where people with different background and
learning habits want to assimilate specific knowledge, it is crucial to allow them
to customize the content of their books according to their knowledge and style.
Besides the requirement for personalized access to educational material from the
learners perspective, there is also a strong motivation from the teacher’s point of
view in using the material for different purposes in different scenarios. A scenario
describes those elements of learning resources that are necessary to achieve certain
learning objectives. Usually, lectures are based on the same material but differ
in focus and in depth of use of the various parts of the material. Depending
on learning goals, learning groups etc. teachers may define different scenarios by
describing the relevant parts of the underlying course material. These scenarios
either may be used by a teacher for generating e.g. scenario specific sets of slides or
even more important, these scenarios may be used by learners during preparation,
e.g., for a certain exam.

Interactivity is another benefit which may be offered by electronic material
(see e.g. [7]). In order to understand certain concepts, interactive systems (like
e.g. computer algebra systems in mathematics or theorem provers in logics) en-
hance teaching resources and fit seamlessly into the relevant parts of the subjects.
In particular, which interactive systems are offered in certain learning scenarios
can be deduced directly from learning profiles of the users or from learning ob-
jectives defined by a teacher.

Living Book is an electronic book providing scenario specific and personal-
ized access to one or multiple underlying documents and integrates interactive
elements in order to support teachers and students with demonstrating examples
and practical exercises. It includes a course on ’logic for computer scientists’
with a uniform access to various tools like theorem provers and an interactive
tableau editor. This course of the Living Book is routinely used within teaching
undergraduate courses at our university.

In Living Book, a scenario management component represents the basis for

1 Introduction 3

adapted delivery of learning resources wrt. to specific learning goals. A course,
e.g., may be based on one or multiple textbooks; usually, a lecturer does not use
the material completely or sequentially but selects those parts that fit the needs
of the current learning situation. By means of scenario specification, relevant
document parts and interactive tools for certain learning goals may be defined.

Scenario management, as realized in the Living Book system, has to our
knowledge not been realized in other works so far. The salient feature of scenario
management is twofold: firstly, a scenario describes which learning resources are
needed in order to obtain certain learning goals and secondly, scenario manage-
ment provides calculation mechanisms that adapt these resources on a user spe-
cific, personalized basis (e.g. existing user knowledge wrt. certain topics is taken
into account). More concretely, our scenario management copes with knowledge
about how scenarios are defined and combines it with user profiles. The latter
refine knowledge about relevant parts in a document, but eventually also contain
exceptions related to standard scenario definitions. The scenario management
takes into account knowledge from three different sources: the different units
of one or multiple underlying textbooks, scenario specifications describing rele-
vant material for certain learning contexts and individual user profiles. Based on
these knowledge sources, personalized documents specific to given scenarios are
calculated on demand and delivered to the user.

In Living Book, scenario management has been implemented by means of a
knowledge based system (see section 3) that relies on deduction techniques as
provided in the KRHyper deduction system (see section 4). Based on the de-
scriptions of different scenarios and on knowledge related to the users’ learning
profiles the deduction mechanism infers the relevant parts of the learning re-
sources. The deduction component is an ideal means for combining various kinds
of knowledge (about the underlying documents, scenarios and individual user
learning goals) in order to derive adaptive personalized documents within the e-
learning context. For the user, the deduction mechanism is transparent, that is,
users benefits from the functionality without the need to understand processing
details.

From an automated reasoning point of view, Living Book can also be seen as a
vehicle to demonstrate the successful application of deduction techniques in real
world applications. Scenario management is realized by means of model based de-
duction as implemented in KRHyper. We use a first order calculus with default
negation. First order specifications provide the basis for efficient model genera-
tion and default negation allows for a much more compact specification than it
would be possible without it, and it allows to conveniently express preferences.
For instance, a scenario management may assume that a user who understands
a certain unit of the document also understands certain presuppositions of this
unit. Within a user profile, however, there may be an explicit indication (e.g.

4

logical fact), that one of the presupposed units is unknown. The knowledge in
the user profile and in the specification from the scenario management therefore
may result in inconsistencies. However, by means of default negation this incon-
sistency can be resolved; that is the knowledge from the user profile would be
considered in this case as an exception to the scenario knowledge and has higher
preference.

Actually, the e-learning application as described here represents a non-trivial
application for deduction techniques wrt. the size of documents (resulting in
many thousands of logical facts) and the number of inference rules to process.
Our implementation shows that deduction techniques for document management
applications like in e-learning is feasible. In fact, it becomes obvious from our
approach, that the techniques presented in this paper may be applied to other
document management applications, like e.g. the generation of problem-specific
Unix man-pages or the assembly of personalized electronic newspapers, too.

The approach proposed in this paper is based on the following techniques:

• Slicing Book Technology (SBT) [11]

• The Living Book Technology (LBT) [7]

• Automated Deduction Techniques for the management of personalized doc-
uments [5]

The first two technologies are described briefly within the next section (section
2). SBT and LBT represent the technical equipment in order to make the Living
Book a useful e-learning application; in particular, SBT separates given text-
books in a set of intra- and interrelated semantic units. LBT provides domain
specific tools for students and teachers that can be used in lectures and exercises.
Scenarios and their representation in the knowledge management system are in-
troduced in section 3. The backbone of the Living Book, the deduction system
implemented in KRHyper is described in section 4. Section 4 also presents the
first order calculus that forms the formal basis of the deduction technique in
KRHyper. In section 5 we summarize our approach and indicate directions for
future work.

2 Slicing Book and Living Book — Background of
Technologies

This paper is based on experiences gained within the project In2Math [26]
supported by the German Ministry for Education and Research and the European
Commission supported project Trial-Solution [37].

2.1 Slicing Book Technology 5

Both projects emphasize on the generation of personalized documents with
a focus on interactive components, explorative use of teaching material and user
modeling.

In2Math is a project headed by the University of Koblenz with members
from 7 research groups and 5 partners from industry. Focus of the development
in Koblenz is the Living Book system.

Living Book means personalized user oriented educational material together
with interactive components. The Living Book aims at supporting the funda-
mental parts of undergraduate classes in theoretical computer science. The main
goal is to support the active, explorative and self-determined learning in lectures,
tutorials and self-study. Living Book relies on the Slicing Book Technology (see
section 2.1) and a knowledge management system (section 3) for generating sce-
nario specific and personalized teaching and learning material.

This section sketches the main ideas of the Slicing Book and gives an overview
about the Living Book technology.

2.1 Slicing Book Technology

The Slicing Book technology takes documents or textbooks as input and splits
them into small semantic units, so called slices, which may be e.g. a paragraph,
a definition, or a problem in the original documents.

The splitting process takes formatting instructions and headlines into account
in order to enrich the slices automatically with an initial amount of meta data.
Additional meta data is then added semi-automatically. For instance, keywords
have to be specified by the author(s) of a document. Meta data is associated with
single slices and also with groups of slices; furthermore, relationships between
slices are described by meta data. Partly this knowledge can be inferred from
the document structure (e.g. by analyzing links that exist between different parts
of a document); to some extent, though, semantical dependencies between slices
are described manually (e.g. which slices of the document have to be understood
by a learner in order to understand a certain subject). Relationships may not
only exist between slices of one document but also between slices of different
documents. The process of splitting documents and adding meta data is described
in more detail in [12]

The slices resulting from the splitting process together with their meta data
provide the basis for the personalized assembly of new documents1. For instance,
a user can mark specific units (slices), like e.g. slice numbers analysis/3/1/15
and analysis/3/1/16 representing e.g. theorem 3.1.15 in the analysis book to-
gether with its proof. Then she can tell the system that she wants to read the

1This is described in somewhat more detail in [4] and also in [5]. The present paper signifi-
cantly extends these two papers.

6

marked unit and gets a PDF document containing just the units she wants to
view. If the user thinks that this information is not sufficient to understand both
the theorem and the proof, she can tell the system to include (automatically) all
units which are prerequisites of the units selected.

Alternatively, a user may select a certain chapter, say e.g. chapter 3 containing
everything about integrals in the analysis book. But instead of requesting all
units from this chapter the user wants the system to take into account that she
knows e.g. unit 3.1 already. Based on the units with their meta data a reasoning
mechanism can exploit this knowledge and combine the LATEX based units to a
new document perfectly fitting the needs of the user. The Slicing Book technology
furthermore contains a glossary and keyword-based search that allows fast access
to all units of interest. Hence, we not only have the text of the books, we have
an entire knowledge base about the material, which can be used by the reader in
order to generate personalized documents from the given books.

2.2 Living Book

Living Book aims at supporting the fundamental parts of undergraduate classes
in theoretical computer science. The main goal is to support the active, explo-
rative and self-determined learning in lectures, tutorials and self study [7]. Living
Book uses the Slicing Book Technology in order to provide a personalization of
content. Currently, a prototype of the Living Book system is used to teach Logics
for Computer Science to undergraduate students at the University of Koblenz.
Interactive components have been added to the book, allowing students to work
on problems and solve exercises by means or in combination with interactive
systems (e.g. theorem provers).

The Living Book relies on the idea of combining the advantages of printed
books, e.g. excellent readability of mathematical and other scientific texts, with
the flexibility and actuality of web based techniques. The statical sequential
structure of classical textbooks is overcome by the possibility of a student to
dynamically select those subjects she is interested in or she needs to know in
order to prepare herself for e.g. an exam.

The main developments in Living Book are that (i) every unit may contain
interactive elements referring to interactive domain tools developed within the
In2Math project or that are available on the Internet and (ii) the integration
of scenario management that provides different learning scenarios related to dif-
ferent learning objectives. Of course, these developments are not independent
of each other but calculating scenario specific documents is done in combination
with user profiles and the user’s current status of knowledge related to subjects
discussed in the textbooks as well as the status stemming from exercises done with
interactive systems. Whereas interactivity will play a subordinate role within the

2.3 Other Approaches 7

rest of the paper, scenario management will now be discussed in more detail.

2.3 Other Approaches

Interactive and personalized E-learning systems have been discussed in the liter-
ature.

In [31] an interactive electronic book (i-book) is presented. This i-book is
devoted to teaching adaptive and neural systems for undergraduates in electrical
engineering. The salient feature of this book is the tight integration of simulators
demonstrating the various topics in adaptive systems and the incremental use
of simulation during each chapter in order to develop successively on a certain
subject. The i-book, though, does not cope with different learning scenarios or
user profiles.

The paper [9] discusses perspectives for electronic books and emphasizes the
need for personalized and user specific content. This article concentrates on per-
sonalized presentation of content, for instance by means of style sheet application
to the content that is delivered to the user. Personalization applied to the content
of the material as done in our approach via scenarios is not considered.

Based on an explicit representation of the structure of the concepts in the
domain of interest and a user model [39] and [29] dynamically generates instruc-
tional courses. These approaches use planning techniques in order to determine
the relevant materials on a per user basis. The user model in [39] describes the
student’s knowledge, and contains history information about previous sessions
as well as personal traits and preferences. Interactivity is not integrated in the
works described by [39]. In [29] an interactive and adaptive system is presented.
Scenarios and user profiles are supported. Here, user profile distinguishes be-
tween knowledge, comprehension and application in order to reflect the different
status of knowledge during learning.

These two approaches differ from Living Book in two main aspect: firstly,
in Living Book, we have chosen a deduction based approach instead of planning
techniques, and secondly, the user profile adapts according to what the users
specify that they know. For instance, the user indicates those units that are
already known. From this the system deduces everything that should be known,
too, based on dependence relationships between knowledge units. In [39, 29],
the user model is adapted based on information the system gathers from a user
during a session, e.g. if a certain exercise has been successfully solved.

3 Scenario Management in Living Book

Besides individual selection of interesting units by learners, Living Book offers
the possibility to select various scenarios defined by a teacher. A scenario can be

8

considered as a predefined view on the material defined with respect to certain
learning objectives. The motivation is that lectures usually do not work with a
given material from the beginning to the end, but instead select those parts of a
book which are necessary to achieve the course objectives. In particular, different
courses may have different objectives.

For instance, an introductory course on some subject has different require-
ments than an advanced course. The teacher may define course specific scenarios
which result in different books and of course different sets of slides for each course.
Another example may be that a teacher wants to specify how students should be
preparing themselves for an exam. A scenario may be defined which covers those
subjects which are relevant for the exam. A final example deals with a “work-
bench” scenario where students should learn to use different tools like theorem
provers, tableaux, etc. for a certain subject like e.g. resolution. The ’logic for
computer scientist’ course in Living Book contains lots of exercises with embed-
ded interactive systems. The “workbench” scenario may be used for a declarative
description of those systems that are relevant for the resolution topic. Within
this scenario, different formulae may be generated for different students (all for-
mulae belong to the same kind of exercise but have e.g. different parameters)
and then be processed by use of the appropriate systems.

Scenarios in the living book context can be considered as a kind of meta-
template which defines what kind of information should be included in a person-
alized document.

In the rest of the section, we describe scenarios from the user’s point of view,
give an overview about the underlying knowledge management system architec-
ture and motivate the logic based approach for representing scenarios and other
knowledge sources in Living Book.

3.1 Using the Scenarios

A scenario describes a specific assembly task according to the reader’s interest. A
student scenario is a scenario that is potentially useful for students. As a typical
example, a student might want to “get an overview about ‘Integral’ ” (cf. the
right of Figure 3, where the “student” communicates this scenario to the KMS).

Still, in order to apply a Student Scenario, we need to provide some more
input. Figure 1 shows a screen-shot of the input mask of our system.

First, we need to specify Topics or Units with either keywords or unit desig-
nations. An example for a topic would be ’Integral’, and an example for an unit
would be analysis/1/2, which means “Section 1.2 of the book analysis”

Then we have to select a concrete scenario. Almost twenty scenarios are
currently available. Figure 2 shows a list of currently implemented scenarios.

Finally, we can adjust a setting for the Exploration of Related Topics. This

3.1 Using the Scenarios 9

Figure 1: Test client: Student Scenarios

10

• Get an overview about a topic

• Get thoroughly into a topic

• Refresh knowledge of a topic

• Get deeper into a topic

• Get material to understand a topic

• Get prerequisites necessary to understand a topic

• Get material to understand the importance of a topic and what it is used for

• Get examples for a topic

• Get material to prepare for an oral exam on a topic

• Get material to prepare for a written exam on a topic

• Get exercises on a topic

• Get guidance for solving exercises on a topic

• Get all theory needed to solve exercises on a topic

• Get solutions to exercises on a topic

• Get exercises of the same kind

• Assemble a memory card / personal formulary

• Get references to literature / further reading

Figure 2: A list of Student Scenarios

3.1 Using the Scenarios 11

setting, which is displayed at the bottom of Figure 1, influences the degree of
exploration of the subtopics hierarchy in the ontology and the references relation.
We can choose between shallow, medium and deep.

• Shallow means that subtopics of the topics entered are not considered, and
that no references of units to other units are explored.

• Medium means that immediate subtopics of the topics entered above are
considered, and that immediate references of units to other units are ex-
plored.

• Deep means that all subtopics of the topics entered above are considered,
and that all references of units to other units are explored, i.e. the transitive
closures are taken.

Besides this information (i.e. topics/units, concrete scenario, exploration flag),
there is yet more information taken into account for the computation of the assem-
bly, namely the User Profile. All units with which the user is already sufficiently
familiar and which are not explicitly selected will not be included in the final
document.

Furthermore a user also has the possibility to specify which books he prefers
over others if two semantically identical slices are considered to be integrated into
the personalized document. These preferences may however be exploited only for
certain types of units. For example, if two definitions from different books are
assigned the same key phrases, the same “thing” is defined. In contrast, if two
theorems from different books are assigned the same key phrases, they usually are
not the same. Hence, preferences for theorems should usually not be explored.

After all necessary information has been provided, the deduction system
KRHyper is invoked. It takes as input the internalized form of the User Data
module, and a logic program is selected according to the concretely chosen sce-
nario (for every concrete scenario listed above under Selected Unit(s) and Topic(s)
there is exactly one corresponding logic program). More information about the
formalization of the domain and the logic programming techniques can be found
below.

The result of the deduction system computation is returned to the Control
Unit. It consists of a description of units that are to be assembled (i.e. a set of
addresses like analysis/1/2).

Then, given this information, the text processors are invoked for the actual
assembly of the units. Currently, there is one document for the computed units
from each book where results were found. Finally, these documents are passed
to the user.

12

Expert Mode. The purpose of the Expert Mode is best explained by an anal-
ogy: usually, Internet search engines offer at least two modes of operation: an
easy-to-use mode, where one just types in some key phrase, and a refined search
mode, where many parameters otherwise left implicit can be set. While the
former mode corresponds in our case to the student scenarios, the latter mode
corresponds to the expert mode. All parameters that influence the execution of
the logic program can be set here.

The expert mode can be characterized as a “non-programmers way to program
the KMS”. Indeed, each of the student scenarios is nothing but a special setting
of the parameters available in the expert mode.

In addition to the usual settings described above, we can specify a number
of additional features, like what types of units (e.g. All, Theorems, Definitions
etc.) are to be included in the assembly, or how far we follow references to/from
our units etc.

The expert mode serves at least three purposes: first, it may be useful to the
end user for the purpose of refined assembly. Second, it may be useful to book
authors during the process of annotating their books with meta data, in order to
explore the plausibility of the meta data in a very controlled way. Third, it may
be an aid for system programmers when conceiving new scenarios.

3.2 KMS architecture

The KMS is designed as client-server architecture. When talking about the KMS
in the sequel, we always mean the server , as it is the crucial part that implements
the whole functionality.

The KMS consists mainly of three parts. It manages two databases, one
containing sliced units and one containing the corresponding meta data. The
main part of the KMS is however the Knowledge Management Component. It
contains a deduction system, KRHyper, the user profiles, and a Control Unit,
which manages the interactions between clients and the server. Figure 3 depicts
the KMS schematically.

We store the following meta data in the KMS Meta Data Database:

• Types of units (“Definition”, “Theorem” etc),

• Keywords describing what the units are about (“Integral” etc),

• References between units (e.g. a “Theorem” unit about “Integral” refers
to a “Definition” unit), and

• what units are Required by other units in order to make sense.

3.3 A logic based approach 13

Lo
gi

k
Fu

rb
ac

h
M

at
he

m
at

ik
Lu

de
re

r
An

al
ys

is
W

ol
te

r/D
ah

n

Keywords
References
RequiredUnits

Types

Ontology

Metadata
Database

Deduction
System

Internalized
Metadata

Logic
Programs

Control Unit

Knowledge
Management
Component

Overview:
"Integral"Books

M
et

ad
at

a
An

no
ta

tio
n

Sl
ic

in
g

Profiles
User

Sliced Units

CGI
TCP/IP

Figure 3: Knowledge Management System architecture

A User Profile stores mainly what is known and what is unknown to the
user. It may heavily influence the computation of the assembly of the final
document.

Currently the user profile is built from explicit declarations given by the user
about units and/or topics that are known/unknown to him. This information is
complemented through a deductive process which tries to figure out what other
units must also be known/unknown according to the initial profile.

It should be noted that the current way of explicit user declarations can
be easily substituted by other, more advanced techniques like automated user
assessment.

3.3 A logic based approach

As said, the task of the Knowledge Management System (KMS) is to manage
sliced books and their corresponding meta data and to compute the assemblies
of new personalized documents from these slices.

The computation of such assemblies, or personalized documents, is a complex
task. We tackle the problems with methods from the areas of logic programming
and automated deduction. More specifically, the assembly tasks are specified

14

by logic programs that are processed by KRHyper
2, the automated deduction

system at the core of the KMS. Here is some actual code from the KMS in order
to get a flavor of the logic programs we use:

interesting unit(Book/Unit) :-
%% get a topic that was derived as interesting:
interesting topic(Topic),
%% check that it can be derived that the topic is not known:
not known topic inferred(Topic),
%% we have to consider those units that are about the topic:
unitKeyword(Book/Unit,Topic),
%% make sure that the unit stems from a book enabled in preferences:
book(Book),
%% check that it can be derived that the unit is not known:
not known unit inferred(Book/Unit).

This rule states a case of how to derive an “interesting unit”. “interesting
units” are at a middle layer in the computational hierarchy. If an “interesting
unit” passes successfully further tests, it names a slice that goes into the final
assembly. Our formalization is described in more detail below, and KRHyper

is described in section 4.
In our opinion, a logic programming approach has several advantages over

other, perhaps more traditional approaches like database (e.g. SQL), object-
oriented or imperative programs. A discussion of this topic is deferred until
Section 5.

3.3.1 Considerations on a Suitable Logic

On a higher, research methodological level the deduction technique used in the
KMS is intended as a bridging-the-gap attempt. On the one side, our approach
employs techniques and attempts to use results from the area of logic-based knowl-
edge representation and logic programming (see e.g. [8] for an overview). One of
the best-studied questions there concerns the semantics of non-monotonic knowl-
edge representation languages like default logic, auto-epistemic logic, and logic
programming languages with a default negation operator3. It turned out that the
semantics of such logic involves several subtleties, which warrant their study in
great detail. Fortunately, much is known today about different logics for knowl-
edge representation purposes. There is a good chance that a logic suitable for a
particular application has been developed and studied in greatest detail. How-
ever, research in this area has been emphasizing theoretical issues for many years.

2“KRHyper” stands for Knowledge Representation Hyper Tableaux.
3Like, for instance, Prolog’s Negation by finite failure operator.

3.3 A logic based approach 15

On the practical side, most calculi and implemented systems for reasoning in such
logics are essentially tied to the propositional level (see [13] for an overview).

On the other side, research in first-order classical reasoning has always had
an additional focus. Not only theoretical issues, but also the design of theo-
rem provers for first-order logic has traditionally received considerable attention.
Much is known about efficient implementation techniques, and highly sophisti-
cated implementations are around (e.g. SETHEO [20], SPASS [40]). Annual,
international competitions are held to crown the “best” prover.

In our attempts to formalize our application domain we found features of both
mentioned areas mandatory: the logic should be a first-order logic, it should sup-
port a default negation principle, and it should be “disjunctive”. These properties
are motivated now with examples from our application.

First-Order Specifications. In the field of knowledge representation it is com-
mon practice to identify a clause with the set of its ground instances. Reasoning
mechanisms often suppose that these sets are finite, so that essentially proposi-
tional logic results. Such a restriction should not be made in our case. Consider
the following clauses from the program code in the KMS about user modeling4:

unknown unit(analysis/1/2/1). (1)
known unit(analysis/1/2/ ALL). (2)
known unit(Book B/Unit B) :- (3)

known unit(Book A/Unit A),
refers(Book A/Unit A, Book B/Unit B).

The fact (1) states that the unit named analysis/1/2/1 is “unknown”; the
fact (2), the _ALL_ symbol stands for an anonymous, universally quantified vari-
able. Due to the /-function symbol (and probably others) the Herbrand-Base is
infinite. Certainly it is sufficient to take the set of ground instances of these facts
up to a certain depth imposed by the books. However, having thus exponentially
many facts, this option seems not really a viable one. The rule (3) expresses how
to derive the know-status of unit from a known-status derived so far and using a
refers-relation among units.

The rules that we write down do not necessarily enjoy the range restrictedness
condition (cf.[28])5. For instance, the first fact listed above is not range-restricted.

Many model-generation systems, like MGTP and Satchmo and its succes-
sors impose the range-restrictedness on the programs admissible for them. A

4We use Prolog notation.
5A program rule is range-restricted iff every variable occurring in the head of a rule also

occurs in its body; facts are read as program rules without a body for the purpose of this
definition.

16

workaround, which can be taken then, is to enumerate the Herbrand-Base during
proof search. This means to consider all ground terms for the variables, which
does not look too prospective.

In sum, we have an “essential” non-ground specification.

Default Negation. Consider the following program code, which is also taken
from the user modeling code from the KMS:

%% Actual user knowledge:
known unit(analysis/1/2/ ALL). (1)
unknown unit(analysis/1/2/1). (2)

%% Program rules:
known unit inferred(Book/Unit) :- (3)

known unit(Book/Unit),
not unknown unit(Book/Unit).

unknown unit inferred(Book/Unit) :- (4)
not known unit inferred(Book/Unit).

The facts (1) and (2) have been described above. It is the purpose of rule (3)
to compute the known-status of a unit on a higher level, based on the known units
and unknown units. The unknown unit inferred relation, which is computed
by rule (4) is the one exported by the user-model computation to the rest of the
program. Now, facts (1) and (2) together seem to indicate inconsistent informa-
tion, as the unit analysis/1/2/1 is both a known unit and a unknown unit.
The rule (3), however, resolves this apparent “inconsistency”. The pragmatically
justified intuition behind is to be cautious in such cases: when in doubt, a unit
shall belong to the unknown unit inferred relation. Also, if nothing has been
said explicitly if a unit is a known unit or an unknown unit, it shall belong to
the unknown unit inferred relation as well. Exactly this is achieved by using
a default negation operation not, when used as written, and when equipping it
with a suitable semantics6.

Disjunctions and Integrity Constraints. Consider the following two clauses:

computed unit(Book1/Unit1) ;
computed unit(Book2/Unit2) :-

definition(Book1/Unit1,Keyword),
definition(Book2/Unit2,Keyword),
not equal(Book1/Unit1, Book2/Unit2).

computed unit(Book2/Unit2) :-
computed unit(Book1/Unit1),
requires(Book1/Unit1, Book2/Unit2).

6Observe that with a classical interpretation of not, counterintuitive models of (1), (2) and
(3) exist.

3.3 A logic based approach 17

The left clause states that if there is more than one definition unit of some
Keyword, then (at least) one of them must be a “computed unit”, one that will
be included in the generated document (the symbol ; means “or”). The right
clause states that if a computed unit requires (the inclusion of) another unit,
then that unit will be a computed unit, too.

A further discussion of this example is postponed until the section on “Se-
mantics” below.

Beyond having proper disjunctions in the head, it is also possible to have
rules without a head, which act as integrity constraints.

3.3.2 Semantics

As motivated above, our interest is in first-order specifications with a default
negation operator. Quite some proposals in the logic programming community
exist for assigning suitable semantics. As a prerequisite, the syntax of such
specifications is restricted to clause logic, written in an implication-rule style,
and the specifications are called programs then. The programs considered by the
various semantics may differ, for instance, whether disjunctions in the head are
allowed (see [8] for an overview). A widely studied class of programs is called
normal logic programs, which consist of implications of the form

A← B1 ∧ · · · ∧Bk ∧ not Bk+1 ∧ · · · ∧ not Bn

where A and the B’s are atoms and n ≥ k ≥ 0 and the symbol not is a distin-
guished symbol, intended as a default-negation operator.

A further important syntactical restriction is defined via the concept of strati-
fication. Roughly, in stratified normal logic programs, no head atom may depend
negatively from itself in the call graph underlying the program (as it would be
the case e.g. in the program A ← not B, B ← A). There is little dispute about
the intended meaning of stratified normal programs, which is given by the perfect
model semantics.

The two major semantics for possibly non-stratified normal logic programs
are the stable model semantics [18] and the well-founded semantics [38]. For
stratified programs they coincide with the perfect model semantics7 [1]. For-
tunately, computing the perfect model semantics of a propositional and finite
normal program has low polynomial complexity (the same holds even for non-
stratified programs for the well-founded semantics, but not for the stable model
semantics). Our database consists of tens of thousands of units and leads to

7The perfect model semantics is defined for stratified programs only. It was developed
before the stable model semantics and the well-founded semantics, and it can be considered as
an important milestone at that time.

18

equally many facts. Being confronted with such large sets of data, the use of a
tractable semantics, like the perfect model semantics, is mandatory.

The class of normal logic programs is generalized by the class of disjunctive
logic programs, which consist of implications of the form

A1 ∨ · · ·Am ← B1 ∧ · · · ∧Bk ∧ not Bk+1 ∧ · · · ∧ not Bn

where m ≥ 0. There exist various proposal for semantics for disjunctive logic
programs, like the stable model semantics, the disjunctive well-founded semantics
and the perfect model semantics for stratified programs (see again [8]).

Indeed, our interest is in disjunctive logic programs. Above, under “Dis-
junctions and Integrity Constraints” a motivating example from our applica-
tion domain was given. Beyond the fact that it demonstrates the usefulness
of disjunctive logic programs for us, the two clauses there can be used to ar-
gue for a central property of our KRHyper system, more precisely its underly-
ing semantics: while the mentioned well-known semantics insist on a minimal-
model property, the semantics that we use does not. To illustrate this point
consider the clause set consisting of just the two propositional clauses A ∨ B
and B ← A. All well-known semantics assign one single model to it, namely
{B}. The model {A,B} as well as all other models are rejected because they
are not minimal. On the other side, it has been argued that models of the
latter form might well “make sense” as well (see e.g. the possible model seman-
tics [34]). Indeed, for our application, non-minimal models like {A,B} make
sense: suppose that a (ground) disjunction like computed unit(analysis/4/2/0)∨
computed unit(analysis/5/4/3) has been derived by means of the left clause.
Now, it might well be that the unit computed unit(analysis/4/2/0) requires the
unit computed unit(analysis/5/4/3). A (non-minimal) model that assigns true to
both computed unit(analysis/4/2/0) and computed unit(analysis/5/4/3), which
would be computed by means of the right rule, perfectly matches the intuition
of what should be computed. However, all the mentioned standard semantics
would reject this model. Therefore, we will define a new semantics appropriate
for our application. The models that we are interested in are called weak perfect
models.8 Each perfect model of a stratified disjunctive program will be a weak
perfect model, but in general there are more weak perfect models for a disjunctive
program than perfect models. For normal logic programs, the notions coincide.

The weak perfect model semantics will be introduced in the next section,
together with a first-order calculus to compute weak perfect models.

8The possible model semantics [34] also allows non-minimal models. However, according
to the intuition for our application, it would compute too many models. E.g., the program
consisting of just A ∨ B has three possible models, which are {A}, {B} and {A, B}. However,
the last one will not be a weak perfect model. In fact, there is no “reason” why both A and B
should be true in a model.

4 KRHYPER 19

4 KRHYPER

The purpose of this section is to describe our deduction system KRHyper under-
lying the KMS. The motivation for the logic that can be treated by KRHyper

was given in Section 3.3.1 above. Therefore, we will concentrate here on the tech-
niques behind KRHyper. More precisely, we will describe the calculus behind
the KRHyper deduction system.

4.1 Hyper Tableaux

The KRHyper calculus developed below is obtained by combining features of two
calculi readily developed – Hyper Tableaux [6] and FDPLL [3] – and some further
adaptations for default negation reasoning. These two calculi were developed for
classical first-order reasoning, and the new calculus can be seen to bring in “a
little monotonicity” to hyper tableaux.

Before turning to a detailed account of the new calculus, we will review by
way of example on the propositional level the calculus as defined in [6].

The Hyper Tableau calculus combines two things: the clustering of certain
basic inference rules into a single one, much as in hyper-resolution [32], and the
framework of clause normal form tableau (see [27]).

Instead of defining the Hyper Tableau calculus formally now as presented in
[27] we will illustrate it with the following example.

Consider the following set of clauses, where clauses are given in implication
form, such that B1 ∨ · · · ∨ Bm ← A1 ∧ · · · ∧ An stands for the clause B1 ∨ · · · ∨
Bm ∨ ¬A1 ∨ · · · ∨ ¬An.

A ← A (1)
B ∨ C ← A (2)
A ∨D ← C (3)

← A ∧B (4)

In order to construct a hyper tableau for this clause set, we start with the
empty tableau ε, which is given in the left part of Figure 4. We will discuss this
derivation from left to right: If we consider clause (1), which we can understand
as ”in any model A has to hold”, hence we extend our single (empty) branch of
the tableau ε by the new leaf A. We arrive at a tableau with a branch which
contains the (possibly) partial model A. Obviously clause (2) does not hold in
this model, because (2) is stating ”if in a model A holds, then B or C has to hold
as well”. Let us repair this, by extending our tableau by these two possibilities;
we extend it by the disjunction B ∨ C, which is expressed in the tableau by a
new branching. The left branch {A,B} of this new tableau, again is a (possibly)

20

partial model, but now we observe that there is a contradiction to clause (4),
which is stating that A and B cannot be true together in any model; hence we
know that this branch does not correspond to a partial model – we mark it as
closed with an asterisk. The right branch of the tableau, however, although it
could be further extended, is a model of the entire clause set (1)– (4).

ε

A A

B C

A

B C
?

A

B C
?

∅ 6|= (1) {A} 6|= (2) {A, B} 6|= (4) {A, C} |= {(1)− (4)}

Figure 4: A sample Hyper Tableau derivation.

We demonstrated the calculus only in the propositional case, but it can be
extended to a complete and correct calculus for full first order clausal logic, and
there are various improvements of its basic variant as introduced in [6].

Hyper tableau calculi are tableau calculi in the tradition of SATCHMO [28].
In essence, interpretations as candidates for models of the given clause set are
generated one after another, and the search stops as soon as a model is found,
or each candidate is provably not a model (refutation). A distinguishing feature
of the hyper tableau calculi [6, 2] to SATCHMO and related procedures is the
representation of interpretations at the first-order level. For instance, given the
clause set consisting of the single clause

equal(X,X) ←

the calculus stops after one step with the model described by the set {equal(X,X)},
which stands for the model that assigns true to each ground instance of equal(X,X).

4.2 Formal Preliminaries

The usual notions of propositional and first-order logic are applied in a way con-
sistent to [10]. A unary negation symbol not is assumed. It is used in front
of atoms only, and not A is called a default negative atom. A clause is an ex-
pression of the form A1 ∨ · · · ∨ Am ← B+ ∪ B−, where B+ = {B1, . . . , Bk} and
B− = {not Bk+1, . . . , not Bn} are multisets of atoms and default negative atoms,
respectively, where m ≥ 0 and n ≥ k ≥ 0. Each atom A1, . . . , Am is called a head
atom, each atom in B+ is called a positive body atom and each element in B− is

4.2 Formal Preliminaries 21

called a default negative body atom . Clauses may also be written as

A1 ∨ · · · ∨Am ← B1 ∧ · · · ∧Bk ∧ not Bk+1 ∧ · · · ∧ not Bn .

Clauses where m = 1 are called normal clauses, clauses where m > 1 are called
disjunctive clauses, clauses where m = 0 are called integrity constraints, and
clauses where n = 0 are called facts. A clause that is not a fact is also called a
rule. A program clause is a normal clause or a disjunctive clause. A program is
a finite set of clauses, and a disjunctive program contains at least one disjunctive
clause.

Observe that there is no need for a “classical” negation sign ¬, because a
disjunction like A1 ∨A2 ∨ ¬B1 ∨ ¬B2 can be written as A1 ∨A2 ← B1 ∧B2.

When saying that a predicate symbol p occurs in a set of atoms or default
negative atoms B, we mean that p is the predicate symbol of some atom or
default negative atom in B. Now let C be a clause written as above. We say that
a predicate symbol occurs positively in C iff it occurs in A ∪ B+, and it occurs
negatively in C iff it occurs in B−. A predicate symbol occurs in C iff it occurs
positively or negatively in C.

If x1,. . . ,xn are variables and t1,. . . ,tn are terms (over a given signature), we
will denote by {x1 7→ t1, . . . , xn 7→ tn} the substitution σ such that xiσ = ti for
all i = 1, . . . , n and xσ = x for all other variables x. A substitution is a renaming
iff it is a bijection of the variables onto themselves.

A unifier for a set Q of terms (or literals) is a substitution δ such that Qδ is
a singleton. The notion of most general unifier (MGU) is used in the usual sense
[10, e.g.], and a respective unification algorithm unify is assumed as given. The
notation σ = unify(Q) means that an MGU σ of Q exists and is computed by
unify applied to Q. Failure (Non-unifiability) is noted as unify(Q) = FAIL.

Quite frequently, a simultaneous unifier for some given unification problems
Q1, . . . , Qn is to be computed, which is a substitution σ that is a unifier for every
Q1, . . . , Qn individually. The notion of a most general unifier can be defined
for the simultaneous case in the same way as above. It is well-known that a
simultaneous most general unifier (simply called MGU as well) can be computed
by iterative application of unify to Q1, . . . , Qn in sequence, thereby applying the
most recently computed MGU to the remaining, still unprocessed unification
problems. See [15] for a thorough treatment. Thus, we may suppose as given a
simultaneous unification algorithm s-unify and write σ = s-unify({Q1, . . . , Qn})
in analogy to σ = unify(Q) above.

Now let A and B atoms. We say that A is more general than B, and write
A & B, iff there is a substitution σ such that Aσ = B; A and B are called
variants, written as A ≈ B, iff A & B and B & A (equivalently: there is a
renaming ρ such that Aρ = B); A is said to be strictly more general than B,
and we write A � B, iff A & B but not A ≈ B. B is also said to be a strict , or

22

proper instance of A then. If neither A & B nor B & A holds, then A and B are
said to be incomparable.

Given an atom A and a set of atoms A, we write A ∈≈ A iff A contains a
variant of A.

Signatures are denoted by the letter Σ. All signatures considered are assumed
to contain at least one constant symbol. The signature underlying a program P
is denoted by ΣP .

By Σ-term we mean a term of signature Σ over a set of variables X. In the
following, we will simply say “term” to mean a Σ-term. A term is ground iff it
contains no variables. A ground substitution for a term t is a substitution γ such
that tγ is ground, and tγ is called a ground instance of t then. These notions
extend to atoms, literals and clauses in the obvious way. A ground program
consists of ground clauses only. Ground program of program P is the ground
program that is obtained by taking all ground instances of all clauses in P .

The Herbrand universe of a signature Σ is the set of all ground Σ-terms; it
is denoted by HU(Σ). Building on HU(Σ), we denote by HB(Σ) the Herbrand
base of Σ, which is the set of all ground Σ-atoms. Finally, any subset of HB(Σ) is
called a (Herbrand Σ-)interpretation I. As usual, the members of I are conceived
as true ground atoms, while absent ground atoms are conceived as false .

Let I be an interpretation. A ground atom A and a ground clause A ←
B+ ∪ B− is evaluated wrt. I as expected, namely: I(A) = true iff A ∈ I and
I(A ← B+ ∪ B−) = true iff B+ ⊆ I and {B | not B ∈ B−} ∩ I = {} implies
A ∩ I 6= {}. Furthermore, for a non-ground clause C define I(C) = true iff
I(C ′) = true for every ground instance C ′ of C.

We say that a finite set B of atoms or default negative atoms is satisfiable in
I iff there is a ground substitution γ for B such that I(Bγ) = true, where the
members of B are connected conjunctively.

As usual, I |= X means I(X) = true where X is a literal, a clause or a
program (the clauses of which are connected conjunctively). If P is a program
and I |= P holds, we also say that I is a model of P . Finally, a minimal model
of P is a model of P such that no proper subset of it is also a model of P .

4.3 Weak Perfect Models

As mentioned near the end of Section 3.3.1, we are interested in stratified disjunc-
tive programs that are interpreted under a variant of the perfect model semantics.
We are now going to define all these notions precisely.

Definition 4.1 (Stratification)
A program P is stratified iff it is decomposable as P = P1 ∪ · · · ∪ Pn, for some
n ≥ 0, and such that the following holds, for i = 1, . . . , n:

4.3 Weak Perfect Models 23

1. If a predicate symbol p occurs positively in a clause in Pi, then all clauses
with p occurring in their head atoms are contained in

⋃
j≤i Pj .

2. If a predicate symbol p occurs negatively in a clause in Pi, then all clauses
with p occurring in their head atoms are contained in

⋃
j<i Pj .

We say that P is stratified via P1 ∪ · · · ∪ Pn and call the Pi’s the strata of P .
A trivial consequence of this definition is that any two rules in a stratified

program with the same predicate symbol occurring their heads must be contained
in the same stratum. This fact will be needed below.

Observe that the definition of stratification applies to all classes of programs:
disjunctive, non-disjunctive, ground and non-ground programs. Furthermore, to
a stratified non-ground program P that is stratified via P1 ∪ · · · ∪ Pn, a “nat-
ural” stratification can be assigned to its ground program P gr by taking the
stratification P gr = P gr

1 ∪ · · · ∪ P gr
n , where P gr

i is the ground program of Pi, for
i = 1, . . . , n.

Example 4.2 Consider the following program P:9

P (x) ∨Q(x)← R(x) (1)P:
P (x)← not R(x) (2)
P (x)← Q(x) (3)
R(a)← (4)

The program P is stratified via {(4)} ∪ {(1), (2), (3)}, and this is its only strat-
ification. Examples for non-stratified programs are {P (x) ← not P (x)} and
{P (x)← not Q(x), Q(x)← not P (x)}.

The idea of stratification is to have the program partitioned in such a way
so that decisions on default negative atoms in rule bodies are “permanent” in
the sense that they are not affected by future decisions; in terms of strata, all
decisions on default negative atoms occurring in a clause in stratum Pi must have
been made during making the decisions on the atoms in

⋃
j<i Pj . Observe that

for every predicate symbol p, the collection of all clauses that contain p in the
head must be found in one single stratum.

The intuition just explained is formalized in the following definition.

Definition 4.3 (Perfect Models)
Let P be a program, stratified via P1 ∪ · · · ∪Pn, and I an interpretation. Define

Ii := {A ∈ I | the predicate symbol of A occurs in a clause in
⋃

j≤i Pj} .

9Here and below, the letters P, Q, R, . . . denote predicate symbols, a, b, c, . . . denote constants,
f, g, h, . . . denote non-constant function symbols, and x, y, z, . . . denote variables.

24

Now, I is called a perfect model of P iff for all i = 1, . . . , n, Ii is a minimal model
of

⋃
j≤i Pj .

Notice that this definition insists on the minimal model property of the sub-
models Ij for each collection of strata

⋃
j≤i Pj individually . The minimal model

of the last collection is (trivially) a minimal model of the whole program. As
said, all those rules that contain a certain predicate symbol, say, p, must be
located in the same stratum, say, Pj (for some j ≤ i). From this fact and the
mentioned minimal model property, it follows easily that the model Ij assigns
true to exactly the same atoms with predicate symbol p as I does. Consequently,
the truth values of the final model I can be determined stratum-wise, from lower
to higher strata. It only needs to assign true to certain instances of head atoms
of the rules in the current stratum, and leaving all other assignments untouched.

Further notice that any unsatisfiable program does not admit a single perfect
model.

Example 4.4 The ground program {C ← C} has the unique perfect model {}.
Intuitively, deriving C by the rule would mean to support the conclusion C by
assuming C at the same time; such a self-support is excluded.

Next, consider the following propositional program:

C ← C (1)P:
B ← not C (2)

A1 ∨A2 ← B ∧ not C (3)
A2 ← A1 (4)

The program P is stratified via P1∪P2 = {(1)}∪{(2), (3), (4)}. It has exactly one
perfect model, which is {B, A2}. (Observe that {B, A1, A2} is not a minimal
model of P2).

For a first-order logic example, consider the program P in Example 4.2 again.
Assuming a signature that just contains the constant a,10, P is equivalent to the
following ground program:

P (a) ∨Q(a)← R(a) (1a)Pa:
P (a)← not R(a) (2a)
P (a)← Q(a) (3a)
R(a)← (4)

The program P has exactly one perfect model, {R(a), P (a)}, which can be easily
read off from Pa.

10More precisely: the signature must also include at least the predicate symbols used. How-
ever, here and below we feel this impreciseness in expression acceptable.

4.3 Weak Perfect Models 25

Now, if the signature would contain additionally the constant b, the following
new ground instances become relevant:

P (b) ∨Q(b)← R(b) (1b)Pb:
P (b)← not R(b) (2b)
P (b)← Q(b) (3b)

With the extended signature, P still has one perfect model, which is {R(a), P (a), P (b)}.
It is not difficult to derive it from Pa ∪ Pb.

Based on the definition of perfect models, the perfect model semantics of a
program can be defined as the three-valued interpretation that assigns true (resp.
false) to all ground atoms that are true (resp. false) in all perfect models of the
program. All remaining ground atoms are undefined. However, the perfect model
semantics as such is not in the center of our interest, while the computation of
perfect models is.

More precisely, for a given program P our interest is to compute a class of
models of P that actually may be a superset of the perfect models of P as defined
above (the motivation for our deviation from the “standard” perfect models was
given above in Section 3.3.2). Any such model will be called a weak perfect
model (of P). The weak perfect model of any (stratified) normal program P will
coincide with its perfect model. Only for non-normal programs, i.e. for programs
with disjunctions in the head of some rules, there will be a difference.

We start with a preliminary definition.

Definition 4.5 (Split Program)
Let P be a ground program. A split program of P is any ground non-disjunctive
program P ′ such that P ′ can be obtained from P by replacing each disjunctive
clause in P of the form A1∨· · ·∨Am ← B+∪B− by a normal clause Aj ← B+∪B−,
for some j with 1 ≤ j ≤ m.

By S(P) we denote the set of all split programs of P .

Observe that a non-disjunctive program admits exactly one split program, which
is the program itself.

Example 4.6 Consider again the ground program Pa from Example 4.4. There
are two split programs, which are the following:

P (a)← R(a) (1a)Pa,P (a):
P (a)← not R(a) (2a)
P (a)← Q(a) (3a)
R(a)← (4)

Q(a)← R(a) (1a)Pa,Q(a):
P (a)← not R(a) (2a)
P (a)← Q(a) (3a)
R(a)← (4)

26

For the ground program Pb, also from Example 4.4, there are also two split
programs:

P (b)← R(b) (1b)Pb,P (b):
P (b)← not R(b) (2b)
P (b)← Q(b) (3b)
R(a)← (4)

Q(b)← R(b) (1b)Pb,Q(b):
P (b)← not R(b) (2b)
P (b)← Q(b) (3b)
R(a)← (4)

In combination, the ground program Pa ∪ Pb has four (obvious) split programs;
they are obtained by combining either Pa,P (a) or Pa,Q(a) with either Pb,P (b) or
Pb,Q(b).

As said above, the definition of stratification (Def. 4.1) applies to both disjunctive
and non-disjunctive programs. Furthermore, to a stratified disjunctive program
P that is stratified via P1 ∪ · · · ∪Pn, a “natural” stratification can be assigned to
any of its split programs P ′ by taking the stratification P ′ = P ′

1∪ · · · ∪P ′
n, where

P ′
i contains a normal clause Aj ← B+ ∪ B− if this clause replaces a disjunctive

clause A1 ∨ · · · ∨Am ← B+ ∪ B− in Pi.
In can be proven that P ′

1 ∪ · · · ∪ P ′
n is a partition of P ′, i.e. that no rule in

P ′ occurs in more than one stratum. In essence, this holds because all rules in P
that have a predicate symbol in common must be contained in the same stratum
of P . So, when building a split program, if a normal clause replaces a disjunctive
clause and this normal clause is already present, these two normal clauses must
be in the same stratum. Based on this result, it follows easily from the definition
of stratification that P ′

1 ∪ · · · ∪ P ′
n is indeed a stratification of P ′.

The observation just made is important in view of the following definition.

Definition 4.7 (Weak Perfect Models)
Let P be a stratified program. An interpretation I is called a weak perfect model
of P if it is a perfect model of some split program of the ground program of P .

Expressed more operationally, the computation of a weak perfect model of a
given program P consists of the following steps: first, the ground program P gr

of P is built. If P is stratified via P1 ∪ · · · ∪ Pn, it was mentioned above that
P gr can be stratified via P gr

1 ∪ · · · ∪ P gr
n . Then, some split program P ′ of P gr

is determined. It was argued above that a natural stratification P ′
1 ∪ · · · ∪ P ′

n of
P ′ exists. Finally, the perfect model of P ′ is a weak perfect model of the given
program P (if it exists).

Clearly, the steps of deriving a ground program and splitting of this program
cannot be swapped. Even if the definition of split program would be prepared
for non-ground programs, and even for restricted cases where head literals do not

4.4 Representation of Interpretations 27

share variables. To see this, consider the program consisting of the single fact
P (x) ∨Q(y) ← and suppose the signature contains just two constants a and b.
Now, according to the definitions above, the ground program consists of the facts
P (a) ∨Q(a)← , P (a) ∨Q(b)← , P (b) ∨Q(a)← and P (b) ∨Q(b)← . It is easy
to see that the set of weak perfect models of this ground program is a superset
of the perfect models of the programs P (x)← and Q(y)← .

Example 4.8 Consider again the propositional program P in Example 4.4 and
its split programs mentioned in Example 4.6. The (non-disjunctive) program
PA1 there has the perfect model {B,A1, A2}, and the (non-disjunctive) program
PA2 there has the perfect model {B,A2}. Hence, both models are weak perfect
models of P . In contrast, as explained in Example 4.4, the single perfect model
of P is {B,A2}.

For the first-order program P in Example 4.2, its ground program (wrt. the
signature that contains the constants a and b) was given in Example 4.4 as Pa∪Pb.
Recall from there that the unique perfect model of Pa ∪ Pb, and hence of P, is
{R(a), P (a), P (b)}. The perfect models of the split programs of Pa ∪ Pb are the
following:

Program Perfect model

Pa,P (a) ∪ Pb,P (b) {R(a), P (a), P (b)}
Pa,P (a) ∪ Pb,Q(b) {R(a), P (a), P (b)}
Pa,Q(a) ∪ Pb,P (b) {R(a), P (a), Q(a), P (b)}
Pa,Q(a) ∪ Pb,Q(b) {R(a), P (a), Q(a), P (b)}

That is, Pa ∪ Pb has the two weak perfect models {R(a), P (a), P (b)} and
{R(a), P (a), Q(a), P (b)}, which are, by definition, the weak perfect models of
the first-order program P.

4.4 Representation of Interpretations

Interpretations shall be represented in a more compact way than explicitly listing
all the true ground atoms. This has two advantages: first, because the inference
rules now reason on compactly represented sets in place of single atoms, higher
efficiency can be achieved. And second, because in some cases infinite sets can
be represented finitely, the calculus will terminate and compute results for more
programs than those systems that perform ground-level reasoning.

The representation we use can be seen as an extension of the ARM concept
(atomic representations of models, see [23]). With ARMs, an interpretation is
represented as a set of non-ground atoms, which stands for the set of all its
ground instances. Our representation extends this idea by the possibility to
partially exclude ground instances represented by such non-ground atoms.

28

Definition 4.9 (Atom with Exceptions)
An atom with exceptions, or AWE for short, is a pair A−E consisting of an atom
A and a finite set of atoms E such that A � E, for every E ∈ E .
For simplicity of notation, we will simply write A instead of A − E if context
allows.

Definition 4.10 (Cover, Most Specific Cover)
We say that an AWE A− E is a cover of an atom B iff

(i) A & B, and

(ii) there is no atom E ∈ E such that E & B.

A cover A−E of B is a most specific cover (MSC) of B in N iff there is no cover
A′ − E ′ ∈ N such that A � A′.

We say that a set of AWEs N covers B iff N contains an MSC of B in N .

In words, A − E covers B means just that B is an instance of A but is not an
instance of any “exception to the instances of A” in E .

Example 4.11 The following figure depicts in the solid region the atoms that
P (x, y)− {P (b, y), p(y, y)} covers.

P (x, y)

P (y, y)
P (b, y)

Now consider a set of AWEsN = {P (a, y)−{P (a, a)}, P (x, y)−{P (b, y), P (y, y)}}.
Both elements cover P (a, c) in N , but only the first element is a MSC of P (a, c)
in N . Neither of them covers P (a, a) in N . Only the second element is a cover
of P (c, a) in N , which is also an MSC of P (c, a) in N .

Suppose a signature that contains just the predicate symbol P and a constant
a. Then, {P (x)−{P (a)}} does not cover any ground atom. Now, if the signature
would contain additionally a constant b, then the same AWE N would cover P (b).

As said, AWEs are intended to represent interpretations. The following definition
makes this precise.

Definition 4.12 (Induced Interpretation)
Let Σ be a signature and N a set of AWEs. The (Herbrand Σ-)interpretation
induced by N , denoted by IN , is the set of all ground Σ atoms that N covers.

4.4 Representation of Interpretations 29

Observe that the interpretation induced by a set of AWEs N is indeed an inter-
pretation as defined in Section 4.2. A ground atom A thus is true in it iff some
AWE in N covers A. More precisely, A is assigned true iff it is an instance of A′,
for some A′ − E in N , and A is not an instance of any atom in E .

The previous example 4.11 shows an important aspect of AWEs: without
knowing the signature, it is impossible to say what ground terms it covers. More
precisely, it is impossible in that case to generate from a given AWE all the
ground instances it covers. However, there is a simple algorithm to determine if
a given AWE covers a given ground atom. This algorithm extends in a trivial
way to the case for finite sets of AWEs.

For reasons that will become clear later, it is important that the AWEs the
calculus computes with satisfy a certain property. In terms of Example 4.11, the
AWE P (x) − {P (a)} will only be acceptable, if there is (at least) one ground
atom different from P (a). In general, an AWE is only acceptable, if it covers
at least one ground atom. As just argued, this is impossible to say unless the
underlying signature is taken into account.

Our approach to determine if an AWE is acceptable in the sense just men-
tioned is based on a normalization operation on AWEs (which takes the signature
into account). From the normalized AWE one can easily read off if the given AWE
is acceptable. We are going to describe this normalization operation now.

Definition 4.13 (Instance Set)
Let Σ be a signature and A an atom. The instance set of A, denoted by ISΣ(A),
is the set of all Σ-ground instances of A. For a set of atoms E , the instance set of
E , denoted by ISΣ(E), is the union of the instance sets of all atoms in E .
Instead of ISΣ(A) (ISΣ(E)) we will simply write IS(A) (IS(E)) if Σ is clear from
the context.

Definition 4.14 (Normalization of Atom Sets)
Given a signature Σ and a finite set of atoms E . A normalization of E is a set of
atoms Eν satisfying the following conditions:

1. IS(E) = IS(Eν).

2. For every non-empty subset E ′ ⊆ E and all atoms A′: if IS(A′) = IS(E ′),
then there is an atom A ∈≈ Eν such that A & A′.

3. There are no two different atoms A,A′ ∈ Eν such that A & A′.

A näıve algorithm to compute a normalization of a given set of atoms E can be
sketched as follows.

30

1. Chose a subset E ′ ⊆ E and an atom A such that A � A′, for every A′ ∈ E ′,
and such that IS(A) = IS(E ′).
(There are only finitely many atoms A such that A � A′, for each A′ ∈ E ′,
modulo renaming. The test for IS(A) = IS(E ′) can be carried out based
on matching A against certain, finitely many Σ-atoms, the term depth of
which is bounded by the term depth of the atoms in E ′. This together
guarantees the termination of step 1).

If there is no such set E ′ and no atom A, then proceed with Step 3.

2. Replace in E the elements in E ′ by A. More formally, E := (E \ E ′) ∪ {A}.
Continue with Step 1.

3. Remove from E as many elements as necessary in order satisfy condition 3
in Definition 4.13.

4. Return E .
The termination of this procedure follows from the fact that in step 2 the new
element A is strictly greater than any maximal element in E ′ it replaces (wrt. the
ordering &). Moreover, it can be verified that a normalization of E always exists,
and it is unique up to renaming of its members. This justifies to speak about
“the” normalization of E in the sequel, and Eν is used to denote some uniquely
determined normalization of E .

Example 4.15 Let us consider an atom set E = {P (a)}, where a is the only
ground term. In this case a represents the whole domain, so E can be normalized
to Eν = {P (x)}.

Now we consider E = {P (f(f(x))), P (f(a)), P (a), P (f(b))}, where a and b
are the only constant function symbols and f is the only other function symbol.
Since P (b) /∈ E , E itself cannot be normalized to {P (x)}. Instead we consider
the subset E ′ = {P (f(f(x))), P (f(a)), P (f(b))}, which leads to the normalization
Eν = {P (f(x)), P (a)}.
As announced, using the normalization operation there is an easy test if a given
AWE covers at least one ground atom:

Proposition 4.16
Let A−E be a an AWE, Σ a signature and Eν be the normalization of E wrt. Σ.
Then, A− E covers no ground Σ-atom iff A− Eν is of the form A− {A′}, where
A′ ≈ A.

For instance, if the signature under consideration Σ contains just the constant a,
them from the AWE P (y)−{P (a)} one obtains P (y)−{P (a)}ν = P (y)−{P (x)},
which indicates that P (y)− {P (a)} does not cover any ground Σ-atom.

4.5 Computing with Atoms with Exceptions 31

4.5 Computing with Atoms with Exceptions

The usual variant-relation “≈” among atoms is extended to AWEs in the follow-
ing way.

Definition 4.17 (Variantship of AWEs)
We say that AWEs A−E and A′−E ′ are variants, and write A−E ≈ A′−E ′, iff

1. A ≈ A′, and

2. there is a bijection from E onto E ′ such that each element from E is mapped
to a variant of it in E ′ .

In Section 4.2 above we introduced the ∈≈-relation among atoms and sets of
atoms. This relation is extended to AWEs A−E and sets of AWEs N by defining
A− E ∈≈ N iff N contains a variant of A− E .

Vaguely spoken, reasoning with AWEs shall occur at the first-order level.
To this end we extend the context of most general unifiers to the framework
introduced so far. The following Definition 4.18 makes this idea precise.

Definition 4.18 (Branch Unifier)
Let N be a set of AWEs and B = {B1, . . . , Bk, not Bk+1, . . . , not Bn} a set of
atoms or default negative atoms. A pair of substitutions (σ, γ) is a branch unifier
of B against N iff there are fresh variants A1−E1, . . . , An−En ∈≈ N and atoms
Ek+1 ∈ Ek+1, . . . , En ∈ En such that

1. σ is a most general simultaneous unifier of {A1, B1}, . . . , {Ak, Bk},
{Ek+1, Bk+1}, . . . , {En, Bn}, and

2. Ai − Ei is a MSC of Biσγ in N , for all i = 1, . . . , k, and

3. N does not cover Biσγ, for all i = k + 1, . . . , n.

We say that a single substitution σ alone is a branch unifier of B against N iff
(σ, ε) is a branch unifier of B against N .11

Example 4.19 (Branch Unifier) Let N = {P (x, y)−{P (x, x), P (a, b)}} be a
set of AWEs and B = {P (z, a), not P (a, z)}. Then, the substitution {x 7→ b, y 7→
a, z 7→ b} is a branch unifier of B against N .12 However, σ = {x 7→ a, y 7→
a, z 7→ a}, which is a simultaneous most general unifier of {P (x, y), P (z, a)}

11By ε, the empty substitution, i.e. the identity function is meant.
12For simplicity of presentation no fresh variants are taken if not essential.

32

and {P (x, x), P (a, z)}, is not a branch unifier of B against N , because P (x, y)−
{P (x, x), P (a, b)} is not a MSC of P (z, a)σ = P (a, a) in N (it is not a cover at
all).

Branch unifiers are a purely syntactical concept, and existence of branch unifiers
against finite sets of AWEs obviously is decidable.

Branch unifiers will be employed in the calculus below to determine if a
rule body of the form B = {B1, . . . , Bk, not Bk+1, . . . , not Bn} is satisfiable in
the interpretation IN associated to a current set of AWEs N . To this end,
candidate atoms A1, . . . , Ak and Ek+1, . . . , En are chosen first, as mentioned in
Definition 4.18 above. Then, a branch unifier σ is sought. However, just com-
puting branch unifiers this way is not sufficient to get a correct calculus. One
more concept is needed, which can be indicated as follows.

Recall that a set of atoms or default atoms B is satisfiable in IN iff some
ground instance of B is true in IN . Having this in mind, “branch unifiers” and
“satisfiability” are related as follows: it is not too difficult to see that a ground
atom B can be true in IN only if N contains an MSC of it; likewise, a ground
default negative atom not B can be true in IN only if B is an instance of some
atom in the exception part of some AWE in N , and if N does not cover B
(because otherwise B were true and so not B were false).13

Speaking imprecisely, after a branch unifier σ of B against N has been com-
puted, one still needs to determine instances of Bσ, the satisfiability of which
is violated in IN . Because the members of B are connected conjunctively, it
suffices to determine these instances individually. These considerations motivate
the following definition.

Definition 4.20 (Branch-Exception Unifier)
Let N be a set of AWEs, B an atom and δ a substitution.

We say that δ is a branch-exception unifier of B against N iff there is a
A− E ∈≈ N and an atom E ∈ E such that

1. δ is a most general unifier of {E,B}, and

2. N does not cover Bδ.

We say that δ is a branch-exception unifier of not B against N iff there is a
A− E ∈≈ N such that

1. δ is a most general unifier of {A,B}, and

2. A− E is a MSC of Bδ in N .
13At least if N contains a pair x − {x}, as explained further below.

4.6 Hyper Tableaux for Weak Perfect Models 33

Observe that B and not B in this definition have the same rôle as the not Bi’s and
Bi’s, respectively, in the definition of branch unifier above. Therefore, strictly
speaking, the definition of branch exception unifier is redundant.

Example 4.21 (Branch-Exception Unifier) Consider the setN = {P (x, y)−
{P (x, x), P (a, b)}} from Example 4.19 again. Then, both δ1 = {z 7→ a} and
δ2 = {z 7→ b} are branch exception unifiers of P (a, z) against N . The substitu-
tion δ3 = {x 7→ a, y 7→ z} is a branch exception unifier of not P (a, z) against N .
There is no branch exception unifier of not P (z, z) against N .

4.6 Hyper Tableaux for Weak Perfect Models

In this section a Hyper Tableau calculus to compute weak perfect models will be
introduced. Before doing so, one more preliminary step must be taken. It can
be explained as follows.

It is clear that an atom A can be assigned true by a set of AWEs only if some
member of A covers it. The “symmetrical” case, in the sense that an atom A can
be assigned false only if it is an instance of some atom of some exception in N ,
does not hold, however. For instance, P (a) will be assigned false if N is empty.
For technical reasons it is preferable to achieve the mentioned “symmetrical”
case. To this end, we will add to N the pair x − {x}, for some variable x.
Observe that x − {x} is not an AWE, because x � x does not hold. However,
this will be the only “AWE” of this kind considered, and treating it as an AWE
will not cause any problems. Having said this, the “AWE” x− {x} now acts as
a default assignment to false to atoms, and the exception part {x} achieves the
desired “symmetry”.

From now on, the signatures under considerations are assumed to contain
a 0-ary predicate symbol ⊥ that is different from all other predicate symbols.
Furthermore, the symbol ⊥ is interpreted by the truth value “false”. That is, no
model of any clause set can contain ⊥.

In the following, N always denotes a finite sequence of AWEs. We say that
such a sequence N is closed iff it contains ⊥ (or, more explicitly, if it contains
⊥− {}), and we say that N is open iff it is not closed.

Where a set of AWEs is required, but a sequence of AWEs is given, the
obvious conversion is implicitly assumed.

The KRHyper calculus consists of three inference rules. They allow to de-
rive from a given sequence of AWEs and a given clause one or more than one
sequence(s) of AWEs. There is one rule to close a sequence of AWEs N by an
integrity constraint, one rule to extend N by means of a normal clause, and one
rule to extend N in a branching way by means of a disjunctive rule.

34

Definition 4.22 (KRHyper Inference Rules)
In the following, sequences of AWEs noted just N are assumed to be open.

Close
N ← B+ ∪ B−

(N ,⊥)
if (*)

where (*): there is a branch unifier of the form (σ, ε) of B+ ∪ B− against N .
We say that an application of the Close inference rule is blocked (by regularity)

iff ⊥ ∈≈ N .

Def-Ext
N A1 ← B+ ∪ B−

(N , A1σ − Eν)
if (*)

where (*): (σ, ε) is a branch unifier of B+ ∪ B− against N , and E is a smallest
set of atoms satisfying the following conditions and such that A1σ 6∈≈ Eν :

(i) for every B ∈ B+, and for every branch-exception unifier δ of Bσ against
N : if A1σ 6≈ A1σδ, then A1σδ ∈≈ E .

(ii) for every not B ∈ B−, and for every branch-exception unifier δ of not Bσ
against N : if A1σ 6≈ A1σδ, then A1σδ ∈≈ E .

We say that an application of the Def-Ext inference rule is blocked (by regularity)
iff A1σ − Eν ∈≈ N .

Disj-Ext
N A1 ∨ · · · ∨Am ← B+ ∪ B−
(N , A1σγ) · · · (N , Amσγ)

if (*)

where (*): m > 1, the pair (σ, γ) is a branch unifier of B+ ∪ B− against N , and
γ is a ground substitution for (A1 ∨ · · · ∨Am)σ.

We say that an application of the Disj-Ext inference rule is blocked (by regu-
larity) iff Aiσγ ∈≈ N , for all i with 1 ≤ i ≤ m.

The requirement in the Def-Ext inference rule that E must be a smallest set
guarantees that E does not contain variants of the same atom. Whenever N is
finite, so will be E then.

The blocked-condition in the definition of the Disj-Ext might seem unusual,
as it permits to branch on a clause, say, A∨B ← if A (but not B) is contained in
the branch. However, the “usual” stronger condition insisting that Aiσγ ∈≈ N ,
for some i with 1 ≤ i ≤ m, cannot be used in our case. Intuitively, the split of a
program containing both, say, A← and A∨B ← might chose B ← , and so any
weak perfect model of the program (which shall be computed by the calculus)
must contain both A and B.

4.6 Hyper Tableaux for Weak Perfect Models 35

Example 4.23 Consider again N = {P (x, y) − {P (x, x), P (a, b)}} from pre-
vious examples. The Close inference rule is applicable to N and the clause
← {P (z, a), not P (a, z)}; the branch unifier used, {x 7→ b, y 7→ a, z 7→ b},

was also given in Example 4.19 above.
The Def-Ext inference rule is applicable to N and the rule Q(z) ← P (a, z)

in the following way. First, a branch unifier of the rule body P (a, z) against
N is computed. The substitution σ = {x 7→ a, y 7→ z} is one. Starting with
P (a, z)σ = P (a, z), branch exception unifiers of P (a, z) against N are computed.
There are two of those: δ1 = {x 7→ a, z 7→ a} and δ2 = {z 7→ b}. They lead to
the new AWE Q(z) − {Q(z)δ1, Q(z)δ2} = Q(z) − {Q(a), Q(b)}. Now, the next
step is to normalize its exception part (cf. Def. 4.14). The result depends from
the signature.

Suppose first a signature that just contains the constants a and b. Then
{Q(a), Q(b)}ν = {Q(x)} (for some variable x). But then, since Q(z) ∈≈ {Q(x)}
holds, Def-Ext is not applicable toN and the rule Q(z)← P (a, z). That this is the
result to be expected can be seen from the set of ground atoms that are covered
by N , which is just {P (b, a)}. Recall that such sets stands for interpretations,
which is here the interpretation that assigns true to P (b, a), but false to every
other atom. Now, in all ground instances of the rule Q(z) ← P (a, z), the rule
body is false in this interpretation, and hence by this rule neither Q(a) nor Q(b)
should be derivable. (As we have seen, we rule is indeed not applicable).

Now suppose a signature that contains the constants a, b and c. Then,
{Q(a), Q(b)}ν = {Q(a), Q(b)}, and so Q(z) /∈≈ {Q(a), Q(b)} follows, and Def-Ext
is applicable to N and the rule Q(z) ← P (a, z). It will extend N by the AWE
Q(z) − {Q(a), Q(b)}. Using a similar line of reasoning as above, it is not too
difficult to see that this is the “expected” result.

There is one feature of the Def-Ext inference rule that has not been demon-
strated so far. It is relevant when a rule contains variables in the head that
do not occur in the body. Take for instance the rule Q(z) ← P (y) and N =
{P (x) − {P (a)}}. To apply Def-Ext, the branch unifier σ = {x 7→ y} of P (y)
against N may be considered (or σ = {y 7→ x}, which will behave the same in the
following argumentation). It leads to the branch exception unifier δ = {y 7→ a} of
P (y) against N . Now, observe that Q(z)σ = Q(z) = Q(z)σδ, and so by Def-Ext
the given set N can be extended by Q(z)− {} (but not by Q(z)− {Q(z)}).

To see that this is the expected result, one has to suppose that the exception
parts in every AWE in N are normalized. (Indeed, the calculus derives only sets
of AWEs N of this kind). Hence, N = {P (x) − {P (a)}} covers at least one
ground atom, say, P (b). But then, the rule Q(z)← P (y) stands in particular for
the instance Q(z) ← P (b), which sanctions the derivation of Q(z). Had we not
given the normalization property as mentioned, it would be impossible to say if
{P (x)−{P (a)}} covers a ground atom, and so deriving Q(z) might not be valid.

36

Finally, to give an example for the Disj-Ext inference rule, consider the disjunc-
tive rule P (y)∨Q(y, z)← R(y) and the set of AWEsN = {R(x)−{R(a)}, Q(b, b)−
{}}. The pair (σ, γ), where σ = {y 7→ x} and γ = {x 7→ a, z 7→ b}, cannot be
used for an Disj-Ext inference rule application, because R(x) − {R(a)} is not a
MSC of R(y)σγ = R(a) (it does not cover R(a) at all). However, the pair (σ, γ),
where σ = {y 7→ x} and γ = {x 7→ b, z 7→ b} can be used for an Disj-Ext inference
rule application. It will branch on the disjunction P (b) ∨ Q(b, b). Observe that
blocking by regularity does not apply, although Q(b, b) ∈≈ N holds. In fact,
the inference rule is expected to be applicable as shown, because, intuitively, the
(perfect) model for the split program P (b)← R(b) shall not be missed.

The main data structure of the KRHyper Tableau Calculus are trees, the
nodes of which are labeled with AWEs. In the following definition and further
below, where a sequence of AWE’s is required, but a branch in such a tree is
given, the branch stands for the sequence of its labels, in the order given by the
branch.

Definition 4.24 (KRHyper Tableau)
Let P be a program, stratified via P1 ∪ · · · ∪ Pn. A KRHyper Tableau for P is
a labeled tree inductively defined as follows:

1. A one-node tree is a derivation tree iff its root is labeled with a pair of the
form x− {x}
Any such tree is called an initial KRHyper-tableau.

2. A tree T′ is a derivation tree iff it is obtained from a derivation tree T by
adding to an open branch N in T new children nodes N1, . . . ,Nm so that
the branches (N ,N1), . . . , (N ,Nm) can be derived by applying an inference
rule to the branch N and a clause C ∈ Pi, for some i with 1 ≤ i ≤ n, and
such that the following holds:

(a) The inference rule application is not blocked. (Regularity)

(b) For every j with 1 ≤ j < i and every clause D ∈ Pj, if an inference
rule is applicable to N and D, then this application is blocked.

(Conformance to Stratification)

In this case we say that T′ is derived from T.

A KRHyper-tableau is said to be closed iff each of its branches is closed. Oth-
erwise it is open.

Notice that closed tableaux cannot be extended further. Notice further that
branches are always finite, as tableaux are finite. Alternatively, KRHyper

4.7 Examples 37

tableaux could be defined as transfinite trees, where the limit cases are given
by the transitions to the next stratum. We refrain from such a definition here,
because it would be (slightly) more complicated, and for our purposes we are
even interested in finite trees only.

In the sequel, the letter κ will denote an ordinal smaller than or equal to
the first infinite ordinal. For every κ then, we will denote a (possibly infinite)
sequence a0, a1, a2, . . . of κ elements by (ai)i<κ.

Definition 4.25 (Derivation)
Let P be a program, stratified via P1 ∪ · · · ∪ Pn.

A derivation (from a program P) is a possibly infinite sequence of derivation
trees D = (Ti)i<κ, such that T0 is an initial KRHyper-tableau, and for all i
with 0 < i < κ, Ti is derived from Ti−1.

We call a derivation from P a refutation of P iff it ends in a closed KRHyper-
tableau. A finite derivation is exhausted iff it cannot be extended further. A
derivation of a KRHyper-tableaux T is a finite derivation whose last element is
T.

We conclude the technical description of the calculus by stating our main re-
sult; a proof is beyond the scope of the this paper and will be published elsewhere.

Theorem 4.26 (KRHyper Tableau Compute Weak Perfect Models)
Let P be a stratified program and D be an exhausted (hence finite) derivation
from P of a KRHyper-tableau T. Then, the following holds.

Soundness: for every open branch N in T, IN is a weak perfect model of P .

Completeness: for every weak perfect model I of P , there is an open branch
N in T such that IN = I.

Notice that the theorem claims completeness not for all (stratified) programs –
which would be impossible to have – but just for those cases where an exhausted
derivation exists. A sufficient condition to enforce finite derivations is given by
the restriction to function-free signatures (but constants are allowed). Even in
this restricted case we claim that much shorter derivations can be achieved as
would be possible via the usual approach of computing with ground programs.

4.7 Examples

To see how we use the calculus in the context of Living Books, we take an excerpt
from the knowledge management component (Figure 5). Its purpose is to find out
by means of the known_unit_inferred relation whether the user has knowledge

38

about some unit in question. The clauses from the excerpt are stratified, i.e. they
are organized in a hierarchical way.

%% User knowledge:
known unit(analysis/1/2/ ALL). (1)
unknown unit(analysis/1/2/1). (2)

%% Book meta data:
refers(analysis/1/2/3, analysis/1/0/4). (3)

%% ‘known unit’ transitive closure:
known unit(Book B/Unit B) :- (4)

known unit(Book A/Unit A),
refers(Book A/Unit A, Book B/Unit B).

%% ‘unknown unit’ transitive closure
unknown unit(Book B/Unit B) :- (5)

unknown unit(Book A/Unit A),
refers(Book A/Unit A, Book B/Unit B).

%% Derived:
known unit inferred(Book/Unit) :- (6)

known unit(Book/Unit),
not unknown unit(Book/Unit).

Figure 5: Excerpt from the knowledge base.

In clause (1), _ALL_ is a universally quantified variable, which means that,
intentionally, all sub-units of analysis/1/2 are declared to be known. Clause
(2) expresses the fact that the user does not know the unit 1/2/1 from the
analysis-book. Clause (6) resolves the apparent inconsistency behind the just
given explanation of clauses (1) and (2). It says that Book/Unit is contained
in the known_unit_inferred-relation (the relation we are interested in), if it is
“known” (by means of the known_unit(Book/Unit) declaration) and this cir-
cumstance is not overridden by an explicit “unknown”-declaration of the same
unit (by means of not unknown_unit(Book/Unit)). This is the actual, prag-
matic semantic of clauses (1) and (2): “unknown”-declarations are stronger than
“known”-declarations. We think that this is appropriate modeling, as “unknown”
units are never withhold from the user. Clauses (4) and (5) are expressing knowl-
edge about the meta data relations “known unit” and “unknown unit”.

Now we will demonstrate how our calculus works on the given clauses. For

4.7 Examples 39

sake of notational simplicity we will write ku for known unit, uu for unknown unit,
ki for known unit inferred, r for refers and we will omit the Book variable.

We start with an initial KRHyper-tableau N . First, we apply Def-Ext to
(1), (3) and (4). By combining these clauses, the unit analysis/1/0/4 is derived
to be “known”:

ku(1/2/ ALL), r(1/2/3, 1/0/4) ku(Unit B)← ku(Unit A), r(Unit A, Unit B)

(N , ku(1/0/4))

The resulting AWE has an empty exception set and is obtained with the
branch unifier σ = {Unit A 7→ 1/2/ ALL , Unit B 7→ 1/0/4}.

Next, we apply Def-Ext to (1),(2) and (6). The derivation says that in the
known_unit_inferred-relation, all sub-units of analysis/1/2, with the excep-
tion of analysis/1/2/1, are known. Observe that the mentioned apparent con-
tradiction between what clauses (1) and (2) say is eliminated as explained.

ku(1/2/ ALL), uu(1/2/1) ki(Unit)← ku(Unit), not uu(Unit)

(N , ki(1/2/ ALL)− {ki(1/2/1)})

The resulting AWE is calculated in two steps: first, we find a branch unifier,
σ = {Unit 7→ 1/2/ ALL }. The instantiated head atom ki(Unit)σ is ki(1/2/
ALL). In the second step we calculate the exception set. With the branch-
exception unifier δ = { ALL 7→ 1} of not uu(1/2/ ALL) against N we get as
only exception ki(1/2/1). The resulting AWE, which is already normalized, is
then added to our tableau.

Figure 6 shows the hyper tableau for the preceding calculus steps.

known unit(analysis/1/0/4)

known unit inferred(analysis/1/2/ ALL)
- { known unit inferred(analysis/1/2/1) }

refers(analysis/1/2/3, analysis/1/0/4)

unknown unit(analysis/1/2/1)

known unit(analysis/1/2/ ALL)

Figure 6: Hyper tableau derivation from the clauses in Figure 5.

40

5 Conclusions

In this article, we have described the Living Book and the use of theorem proving
technology as a core component in the knowledge management system (KMS)
of the Living Book. The task of the KMS is to assemble new documents from a
database of elementary units representing the given learning material with respect
to various learning scenarios. The computation of such assemblies is carried out
by a model-generating theorem prover for first-order logic with a default negation
principle. Its input consists of meta data that describe the dependencies between
different elementary units, and logic-programming style rules that describe the
scenario composition of these units. Additionally, a user model is taken into
account that contains information about topics and slices that are known or
unknown to a learner. A model computed by the system for such input then
directly specifies the document to be assembled.

The deduction technique used in the KMS is based on the KRHyper de-
duction system. In this work, we have shown that the deduction techniques as
realized in KRHyper is a suitable means for combining various kinds of knowl-
edge given by the various learning resources, scenarios and user profiles in order
to derive adaptive personalized documents within the e-learning context.

The paradigm used to describe the computations is a rather general one: first-
order logic programs with a default negation operator. Furthermore, parts of the
programs specify computations that are not connected to the E-learning domain
as such, but are equally usable in different contexts as well. For instance, the
system uses a binary relation “refers” between units and computes its transitive
closure. Obviously, such “reference” relations occur frequently between all types
of information in various domains . In conclusion, beyond having demonstrated
that our Living Book system is an example for a successful use of deduction
techniques in a complex real-world application, we think that the underlying
techniques can readily be employed for a rather wide class of applications

The calculus of the deduction component in the Living Book has been the
focus of this work. Its main aspects and our contribution with respect to this
calculus is summarized in the next section and discussed in the context of other
approaches in section 5.2.

5.1 Calculus

One of the big challenges in both classical logic and non-monotonic logics is to
design calculi and efficient procedures to compute models for first-order speci-
fications. Some attempts have been made for classical first-order logic, thereby
specializing on decidable cases of first-order logic and designing respective de-
cision procedures, roughly, that detect and prune loops in derivations (see e.g.

5.2 Other Approaches 41

[16, 30, 3, 36]) or restrict the input language such that loops cannot occur at all
[19, e.g.]. Our approach is of the latter kind.

In the field of logic programming, a common viewpoint is to identify a program
with the set of all its ground instances and then to apply propositional methods
(see below for first-order methods) . Of course, this approach is feasible only in
restricted cases, when reasoning can be restricted to a finite subset of the possibly
infinite set of ground instances. Even the best systems following this approach
reach their limits when confronted with sufficiently large data sets.

In our application we are confronted with data sets coming from tens of
thousands of units. Due to this mass, grounding of the programs before the
computation starts seems seems not a viable option. Therefore, our KRHyper

tableau calculus directly computes models, starting from the given program, and
without grounding it beforehand. In order to make this work for the case of
programs with default negation, a novel technique for the representation of and
reasoning with non-ground representations of interpretations is developed. As
a starting point we took a calculus originally developed for first-order classical
reasoning – hyper tableaux [6] – and modified it according to the weak perfect
model semantics.

Only some approaches have been reported in the literature that also work
on the first-order level. For the well-founded semantics and the stable model
semantics of normal programs see [22, 21], and for the well-founded semantics
for disjunctive programs see [14]. The closest relative to our approach is the
bottom-up method to compute perfect models of (stratified) disjunctive pro-
grams in [17]. The “model trees” defined there are structurally identical to our
KRHyper tableaux, however, unlike KRHyper Tableaux, they work on the
ground level. For the common domain of propositional programs, the KRHy-

per tableau approach could be refined to obtain the model tree approach by
adding a “model minimality test” that would close a branch after a stratum has
been exhausted and the resulting interpretation is not a minimal model for the
underlying split program up to the considered stratum. For the general case of
non-propositional programs it will be future work to see if such a model mini-
mality test can be added to KRHyper tableaux, so that perfect models instead
of weak perfect models will be computed.

5.2 Other Approaches

In this work, specifications in the logic programming style are advocated as an
appropriate formalism to model our task at hand. In brief, our approach is
completely declarative, and hence we believe that there are advantageous over
more procedural oriented techniques. Undoubtedly, there are other candidate
formalisms that seem well-suited, too. In the following we comment on these.

42

Prolog. Certainly, one could write a Prolog program to solve a query. When do-
ing so, it seems natural to rely on the findall built-in to compute the extension
of the, e.g., computed_unit predicate, i.e. the solution to a query. Essentially,
this means to enumerate and collect all solutions of the goal computed_unit(U)
by means of the Prolog built-in backtracking mechanism. In order to make this
work, some precautions have to be taken. In particular explicit loop checks would
have to be programmed in order to let findall terminate. Because otherwise,
for instance, alone the presence of a transitivity clause causes findall not to
terminate.

It is obvious that a Prolog program along these lines would be much more
complicated than our programs (like eg. in Section 3.3). Furthermore, our ap-
proach relieves the programmer from the burden of explicitly programming a
loop mechanism, because it is built into the model computation procedure pre-
sented below. Indeed, this is a distinguishing and often mentioned advantage of
virtually all bottom-up model generation procedures over Prolog.

XSB-Prolog. One of the few programming languages that works top-down (as
Prolog) and that has built-in loop checking capabilities (as bottom-up model gen-
eration procedures) is XSB-Prolog [33]. XSB-Prolog supports query answering
wrt. the well-founded semantics for normal logic programs [38]. At the heart of
XSB-Prolog is the so-called tabling device that stores solutions (instantiations)
of goals as soon as computed. Based on tabling, it is even possible to compute
extensions of predicates (such as computed_unit) and return them to the user.

The only problem with XSB-Prolog for our application is the restriction to
normal programs, i.e. disjunctions in the head of program clauses are not allowed.
Certainly, this problem could be circumvented by explicitly coding disjunctions
in the program, but possibly at the cost of far less intuitive solutions.

Description Logics. Description logics (DL) are a formalism for the repre-
sentation of hierarchically structured knowledge about individuals and classes
of individuals. Nowadays, numerous descendants of the original ALC formalism
and calculus [35, e.g.] with greatly enhanced expressive power exist, and efficient
respective systems to reason about DL specifications have been developed [25].

The concrete units would form the so-called assertional part (A-Box), and
general “is-a” or “has-a” knowledge would form the terminological part (T-Box).
The T-Box would contain, for instance, the knowledge that a unit with type
“example” is-a “explanatory unit”, and also that a unit with type “figure” is-a
“explanatory unit”. Also, transitive relations like “requires” should be accessible
to DL formalisms containing transitive roles.

At the current state of our work, however, it is not yet clear how we can
implement disjunctive and non-monotonic reasoning using a DL formalism. Cer-
tainly, much more work has to be spent here. Presumably, one would arrive at

5.3 Status of This Work and Perspectives 43

a combined DL and disjunctive logic programming approach. This is left here as
future work.

5.3 Status of This Work and Perspectives

The calculus and its implementation are developed far enough, so that practical
use is possible. The implementation is carried out in Eclipse Prolog. For faster
access to base relations, i.e. the currently computed model candidate, the dis-
crimination tree indexing package from the ACID term indexing library [24] is
integrated. Without indexing, even moderately sized problems are not solvable.
With indexing, the response time for a typical query with a database stemming
from about 100 units takes less than a second. A similar query, applied to a
richer book with about 4000 units takes ten seconds, which seems almost accept-
able. Currently, the Living Book system manages the units of one book ’Logic for
Computer Scientists’; we already have gained experience with the combination of
learning material of multiple books but we still think that some optimization is
necessary in order to achieve the required performance for this amount of data.
An optimized implementation of the KRHyper system is currently developed
[41].

Related to the functionality of the Living Book system and the e-learning
context there are two more aspects we want to address. Firstly, the scenario
management presented so far considers the various scenarios as independent from
each other. It would be useful from a pedagogical point of view, though, to relate
the various scenarios and to specify dependencies between them. This could be
used by a teacher in order to define various learning paths for students.

Secondly, a more advanced aspect that we want to address aims at collabo-
rative learning. In collaborative learning, a group of students is working on the
solution of a problem. The group is supposed to be guided by experts in group
behavior and pedagogical aspects of collaborative learning. The idea is to formal-
ize the domain knowledge of these experts within our logic-based framework and
to compute models representing the relevant learning material for such a group.

Acknowledgements. We are grateful to Christoph Wernhard for valuable dis-
cussions about the calculus.

References

[1] Bachmair, L., and Ganzinger, H. Perfect Model Semantics for Logic
Programs with Equality. In Proc. ICLP (1991).

44 REFERENCES

[2] Baumgartner, P. Hyper Tableaux — The Next Generation. In Automated
Reasoning with Analytic Tableaux and Related Methods (1998), H. de Swaart,
Ed., vol. 1397 of Lecture Notes in Artificial Intelligence, Springer, pp. 60–76.

[3] Baumgartner, P. FDPLL – A First-Order Davis-Putnam-Logeman-
Loveland Procedure. In CADE-17 – The 17th International Conference on
Automated Deduction (2000), D. McAllester, Ed., vol. 1831 of Lecture Notes
in Artificial Intelligence, Springer, pp. 200–219.

[4] Baumgartner, P. Automated deduction techniques for the management of
personalized documents. In Proc. of the IJCAR-Workshop Future Directions
in Automated Reasoning (Siena, Italy, 2001), M. Kerber, Ed.

[5] Baumgartner, P., and Furbach, U. Automated Deduction Techniques
for the Management of Personalized Documents. Annals of Mathematics
and Artificial Intelligence – Special Issue on Mathematical Knowledge Man-
agement (Kluwer Academic Publishers, 2002). Accepted for Publication.

[6] Baumgartner, P., Furbach, U., and Niemelä, I. Hyper Tableaux. In
Proc. JELIA 96 (1996), no. 1126 in Lecture Notes in Artificial Intelligence,
European Workshop on Logic in AI, Springer.

[7] Baumgartner, P., Gross-Hardt, M., and Simon, A. B. Living Book
– An Interactive and Personalized Book. In SSGRR 2002s - International
Conference on Advances in Infrastructure for e-Business, e-Education, e-
Science, and e-Medicine on the Internet (2002), V. Milutinovic, Ed., Pub-
lished electronically (http://www.ssgrr.it/en/ssgrr2002s/papers.htm).

[8] Brewka, G., Dix, J., and Konolige, K. Nonmonotonic Reasoning,
vol. 73 of Lecture Notes. CSLI Publications, 1997.

[9] Bry, F., and Kraus, M. Perspectives for electronic books in the world
wide web age. The Electronic Library Journal 20, 4 (2002), 275–287.

[10] Chang, C., and Lee, R. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

[11] Dahn, I. Slicing book technology - providing online support for textbooks.
In Proc. of the 20th World Conference on Open and Distance Learning
(Düsseldorf/Germany, 2001), H. Hoyer, Ed.

[12] Dahn, I. Using networks for advanced personalization of documents. In
Proc. SSGRR 2001 (L’Aquila/Italy, 2001), V. Milutinovic, Ed.

REFERENCES 45

[13] Dix, J., Furbach, U., and Niemelä, I. Nonmonotonic Reasoning: To-
wards Efficient Calculi and Implementations. In Handbook of Automated
Reasoning, A. Voronkov and A. Robinson, Eds. Elsevier-Science-Press, 2001,
pp. 1121–1234.

[14] Dix, J., and Stolzenburg, F. A framework to incorporate non-monotonic
reasoning into constraint logic programming. Journal of Logic Programming
37, 1-3 (1998), 47–76. Special Issue on Constraint Logic Programming. Guest
editors: Kim Marriott and Peter J. Stuckey.

[15] Eder, E. Properties of Substitutions and Unifications. Journal of Symbolic
Computation 1, 1 (March 1985).

[16] Fermller, C., and Leitsch, A. Hyperresolution and automated model
building. Journal of Logic and Computation 6, 2 (1996), 173–230.

[17] Fernández, J. A., and Minker, J. Bottom-up computation of perfect
models for disjunctive theories. Journal of Logic Programming 25, 1 (1995).

[18] Gelfond, M., and Lifschitz, V. The stable model semantics for logic
programming. In Proceedings of the 5th International Conference on Logic
Programming, Seattle (1988), R. Kowalski and K. Bowen, Eds., pp. 1070–
1080.

[19] Georgieva, L., Hustadt, U., and Schmidt, R. A. Hyperresolution for
guarded formulae. Journal of Symbolic Computation (2002). To appear.

[20] Goller, C., Letz, R., Mayr, K., and Schumann, J. Setheo v3.2:
Recent developments — system abstract —. In Automated Deduction —
CADE 12 (Nancy, France, June 1994), A. Bundy, Ed., LNAI 814, Springer-
Verlag, pp. 778–782.

[21] Gottlob, G., Marcus, S., Nerode, A., Salzer, G., and Subrah-

manian, V. S. A non-ground realization of the stable and well-founded
semantics. Theoretical Computer Science 166, 1-2 (1996), 221–262.

[22] Gottlob, G., Marcus, S., Nerode, A., and Subrahmanian, V. Non-
ground stable and wellfounded semantics, 1994.

[23] Gottlob, G., and Pichler, R. Working with arms: Complexity results
on atomic representations of herbrand models. In Proceedings of the 14th
Symposium on Logic in Computer Science (1998), IEEE.

[24] Graf, P. ACID User Manual - version 1.0. Technical Report MPI-I-94-
DRAFT, Max-Planck-Institut, Saarbrcken, Germany, June 1994.

46 REFERENCES

[25] Horrocks, I., Sattler, U., and Tobies, S. Practical reasoning for
very expressive description logics. Logic Journal of the IGPL 8, 3 (2000),
239–263.

[26] In2Math. Interactive elements in mathematics and computer science edu-
cation for undergraduates. www.in2math.de.

[27] Letz, R. Clausal Tableaux. In Automated Deduction. A Basis for Applica-
tions (1998), W. Bibel and P. H. Schmitt, Eds., Kluwer Academic Publishers.

[28] Manthey, R., and Bry, F. SATCHMO: a theorem prover implemented
in Prolog. In Proceedings of the 9 th Conference on Automated Deduction,
Argonne, Illinois, May 1988 (1988), E. Lusk and R. Overbeek, Eds., vol. 310
of Lecture Notes in Computer Science, Springer, pp. 415–434.

[29] Melis, E., Andres, E., Büdenbender, J., Frischauf, A., Goguadze,

G., Libbrecht, P., Pollet, M., and Ullrich, C. Activemath: A
generic and adaptive web-based learning environment. Journal of Artificial
Intelligence and Education 12, 4 (2001), 385–407.

[30] Peltier, N. Pruning the search space and extracting more models in
tableaux. Logic Journal of the IGPL 7, 2 (1999), 217–251.

[31] Principe, J. C., Euliano, N. R., and Lefebvre, W. C. Innovating
adaptive and neural systems instruction with interactive electronic books.
Proc. IEEE 88, 1 (2000), 81–95.

[32] Robinson, J. A. Automated deduction with hyper-resolution. Internat. J.
Comput. Math. 1 (1965), 227–234.

[33] Sagonas, K., Swift, T., and Warren, D. S. An abstract machine
for computing the well-founded semantics. Journal of Logic Programming
(2000). To Appear.

[34] Sakama, C. Possible Model Semantics for Disjunctive Databases. In Pro-
ceedings First International Conference on Deductive and Object-Oriented
Databases (DOOD-89) (1990), W. Kim, J.-M. Nicholas, and S. Nishio, Eds.,
Elsevier Science Publishers B.V. (North–Holland) Amsterdam, pp. 337–351.

[35] Schmidt-Schau, M., and Smolka, G. Attributive concept descriptions
with complements. Artificial Intelligence 48, 1 (1991), 1–26.

[36] Stolzenburg, F. Loop-detection in hyper-tableaux by powerful model
generation. Journal of Universal Computer Science 5, 3 (1999), 135–155.
Special Issue on Integration of Deduction Systems. Guest editors: Reiner

REFERENCES 47

Hähnle, Wolfram Menzel, Peter H. Schmitt and Wolfgang Reif. Springer,
Berlin, Heidelberg, New York.

[37] Trial-Solution. Project supported by european commission.
www.trial-solution.de.

[38] Van Gelder, A., Ross, K. A., and Schlipf, J. S. The well-founded
semantics for general logic programs. Journal of the ACM 38 (1991), 620–
650.

[39] Vassileva, J. Dynamic courseware generation at the www. In Proc. of
the 8th World Conference on AI and Education (AIED’97) (Kobe, Japan,
1997).

[40] Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T.,

Keen, E., Theobalt, C., and Topić, D. System description: Spass ver-
sion 1.0.0. In CADE-16 – The 16th International Conference on Automated
Deduction (Trento, Italy, 1999), H. Ganzinger, Ed., vol. 1632 of Lecture
Notes in Artificial Intelligence, Springer, pp. 378–382.

[41] Wernhard, C. System description: Krhyper3. Submitted, 2003.

Available Research Reports (since 1998):

2003

2/2003 Peter Baumgartner, Margret Groß-Hardt, Alex
Sinner.Living Book – Deduction, Slicing and
Interaction.

1/2003 Peter Baumgartner, Cesare Tinelli.The Model
Evolution Calculus.

2002

12/2002 Kurt Lautenbach.Logical Reasoning and
Petri Nets.

11/2002 Margret Groß-Hardt.Processing of Concept
Based Queries for XML Data.

10/2002 Hanno Binder, J́erôme Diebold, Tobias
Feldmann, Andreas Kern, David Polock,
Dennis Reif, Stephan Schmidt, Frank Schmitt,
Dieter Zöbel.Fahrassistenzsystem zur
Unterstützung beim R¨uckwärtsfahren mit
einachsigen Gespannen.

9/2002 Jürgen Ebert, Bernt Kullbach, Franz Lehner.
4. Workshop Software Reengineering (Bad
Honnef, 29./30. April 2002).

8/2002 Richard C. Holt, Andreas Winter, Jingwei Wu.
Towards a Common Query Language for
Reverse Engineering.

7/2002 Jürgen Ebert, Bernt Kullbach, Volker Riediger,
Andreas Winter.GUPRO – Generic
Understanding of Programs, An Overview.

6/2002 Margret Groß-Hardt.Concept based querying
of semistructured data.

5/2002 Anna Simon, Marianne Valerius.User
Requirements – Lessons Learned from a
Computer Science Course.

4/2002 Frieder Stolzenburg, Oliver Obst, Jan Murray.
Qualitative Velocity and Ball Interception.

3/2002 Peter Baumgartner.A First-Order Logic
Davis-Putnam-Logemann-Loveland Procedure.

2/2002 Peter Baumgartner, Ulrich Furbach.
Automated Deduction Techniques for the
Management of Personalized Documents.

1/2002 Jürgen Ebert, Bernt Kullbach, Franz Lehner.
3. Workshop Software Reengineering (Bad
Honnef, 10./11. Mai 2001).

2001

13/2001 Annette Pook.Schlussbericht “FUN -
Funkunterrichtsnetzwerk”.

12/2001 Toshiaki Arai, Frieder Stolzenburg.
Multiagent Systems Specification by UML
Statecharts Aiming at Intelligent
Manufacturing.

11/2001 Kurt Lautenbach.Reproducibility of the
Empty Marking.

10/2001 Jan Murray.Specifying Agents with UML in
Robotic Soccer.

9/2001 Andreas Winter.Exchanging Graphs with
GXL.

8/2001 Marianne Valerius, Anna Simon.Slicing Book
Technology — eine neue Technik f¨ur eine neue
Lehre?.

7/2001 Bernt Kullbach, Volker Riediger.Folding: An
Approach to Enable Program Understanding of
Preprocessed Languages.

6/2001 Frieder Stolzenburg.From the Specification of
Multiagent Systems by Statecharts to their
Formal Analysis by Model Checking.

5/2001 Oliver Obst.Specifying Rational Agents with
Statecharts and Utility Functions.

4/2001 Torsten Gipp, J̈urgen Ebert.Conceptual
Modelling and Web Site Generation using
Graph Technology.

3/2001 Carlos I. Ches̃nevar, J̈urgen Dix, Frieder
Stolzenburg, Guillermo R. Simari.Relating
Defeasible and Normal Logic Programming
through Transformation Properties.

2/2001 Carola Lange, Harry M. Sneed, Andreas
Winter.Applying GUPRO to GEOS – A Case
Study.

1/2001 Pascal von Hutten, Stephan Philippi.
Modelling a concurrent ray-tracing algorithm
using object-oriented Petri-Nets.

2000

8/2000 Jürgen Ebert, Bernt Kullbach,
Franz Lehner (Hrsg.).2. Workshop Software
Reengineering (Bad Honnef, 11./12. Mai
2000).

7/2000 Stephan Philippi.AWPN 2000 - 7. Workshop
Algorithmen und Werkzeuge f¨ur Petrinetze,
Koblenz, 02.-03. Oktober 2000 .

6/2000 Jan Murray, Oliver Obst, Frieder Stolzenburg.
Towards a Logical Approach for Soccer Agents
Engineering.

5/2000 Peter Baumgartner, Hantao Zhang (Eds.).
FTP 2000 – Third International Workshop on
First-Order Theorem Proving, St Andrews,
Scotland, July 2000.

4/2000 Frieder Stolzenburg, Alejandro J. Garcı́a,
Carlos I. Ches̃nevar, Guillermo R. Simari.
Introducing Generalized Specificity in Logic
Programming.

3/2000 Ingar Uhe, Manfred Rosendahl.Specification
of Symbols and Implementation of Their
Constraints in JKogge.

2/2000 Peter Baumgartner, Fabio Massacci.The
Taming of the (X)OR.

1/2000 Richard C. Holt, Andreas Winter, Andy Schürr.
GXL: Towards a Standard Exchange Format.

1999

10/99 Jürgen Ebert, Luuk Groenewegen, Roger
Süttenbach.A Formalization of SOCCA.

9/99 Hassan Diab, Ulrich Furbach, Hassan Tabbara.
On the Use of Fuzzy Techniques in Cache
Memory Managament.

8/99 Jens Woch, Friedbert Widmann.Implementation
of a Schema-TAG-Parser.

7/99 Jürgen Ebert, and Bernt Kullbach, Franz
Lehner (Hrsg.).Workshop
Software-Reengineering (Bad Honnef, 27./28.
Mai 1999).

6/99 Peter Baumgartner, Michael K̈uhn.Abductive
Coreference by Model Construction.

5/99 Jürgen Ebert, Bernt Kullbach, Andreas Winter.
GraX – An Interchange Format for
Reengineering Tools.

4/99 Frieder Stolzenburg, Oliver Obst, Jan Murray,
Björn Bremer.Spatial Agents Implemented in a
Logical Expressible Language.

3/99 Kurt Lautenbach, Carlo Simon.Erweiterte
Zeitstempelnetze zur Modellierung hybrider
Systeme.

2/99 Frieder Stolzenburg.Loop-Detection in
Hyper-Tableaux by Powerful Model
Generation.

1/99 Peter Baumgartner, J.D. Horton, Bruce Spencer.
Merge Path Improvements for Minimal Model
Hyper Tableaux.

1998

24/98 Jürgen Ebert, Roger S̈uttenbach, Ingar Uhe.
Meta-CASE Worldwide.

23/98 Peter Baumgartner, Norbert Eisinger, Ulrich
Furbach.A Confluent Connection Calculus.

22/98 Bernt Kullbach, Andreas Winter.Querying as
an Enabling Technology in Software
Reengineering.

21/98 Jürgen Dix, V.S. Subrahmanian, George Pick.
Meta-Agent Programs.

20/98 Jürgen Dix, Ulrich Furbach, Ilkka Niemelä .
Nonmonotonic Reasoning: Towards Efficient
Calculi and Implementations.

19/98 Jürgen Dix, Steffen Ḧolldobler.Inference
Mechanisms in Knowledge-Based Systems:
Theory and Applications (Proceedings of WS
at KI ’98).

18/98 Jose Arrazola, J̈urgen Dix, Mauricio Osorio,
Claudia Zepeda.Well-behaved semantics for
Logic Programming.

17/98 Stefan Brass, J̈urgen Dix, Teodor C.
Przymusinski.Super Logic Programs.

16/98 Jürgen Dix.The Logic Programming Paradigm.

15/98 Stefan Brass, J̈urgen Dix, Burkhard Freitag,
Ulrich Zukowski.Transformation-Based
Bottom-Up Computation of the Well-Founded
Model.

14/98 Manfred Kamp.GReQL – Eine Anfragesprache
für das GUPRO–Repository –
Sprachbeschreibung (Version 1.2).

12/98 Peter Dahm, J̈urgen Ebert, Angelika Franzke,
Manfred Kamp, Andreas Winter.TGraphen und
EER-Schemata – formale Grundlagen.

11/98 Peter Dahm, Friedbert Widmann.Das
Graphenlabor.

10/98 Jörg Jooss, Thomas Marx.Workflow Modeling
according to WfMC.

9/98 Dieter Zöbel.Schedulability criteria for age
constraint processes in hard real-time systems.

8/98 Wenjin Lu, Ulrich Furbach.Disjunctive logic
program = Horn Program + Control program.

7/98 Andreas Schmid.Solution for the counting to
infinity problem of distance vector routing.

6/98 Ulrich Furbach, Michael K̈uhn, Frieder
Stolzenburg.Model-Guided Proof Debugging.

5/98 Peter Baumgartner, Dorothea Schäfer.Model
Elimination with Simplification and its
Application to Software Verification.

4/98 Bernt Kullbach, Andreas Winter, Peter Dahm,
Jürgen Ebert.Program Comprehension in
Multi-Language Systems.

3/98 Jürgen Dix, Jorge Lobo.Logic Programming
and Nonmonotonic Reasoning.

2/98 Hans-Michael Hanisch, Kurt Lautenbach, Carlo
Simon, Jan Thieme.Zeitstempelnetze in
technischen Anwendungen.

1/98 Manfred Kamp.Managing a Multi-File,
Multi-Language Software Repository for
Program Comprehension Tools — A Generic
Approach.

