Developer Profiling - extract developer expertise
in a Django app
Frederik Riither
Matriculation Number: 212200063

December 18, 2015

Abstract

The identification of experts for a specific technology or framework produces a
large benefit for collaborative software projects. Hence it reduces the communi-
cation overhead that is required to identify an expert on the fly. Therefore this
thesis describes a tool and approach that can be used to identify an expert that
has a specific skill-set. It will mainly focus on the skills and expertise of devel-
opers that use the Django framework. By adding more rules to our framework
that approach could easily be extended for different technologies or frameworks.
The paper will close with a case study on an open source project.

Zusammenfassung

Die automatische Identifikation von Experten in einer speziellen technolo-
gischen Doméne, wie einer Bibliothek, Framework oder generellen Technologie,
schafft einen groflen Mehrwert in der gemeinsamen Entwicklung von Software-
projekten. Daher soll in dieser Arbeit ein Vorgehen sowie ein Programm zur au-
tomatischen Identifikation von Experten entwickelt werden, die gewissen Skills
besitzen. Hierbei wird speziell das Django-Framework betrachtet. Jedoch kann
durch hinzufiigen von weiteren Regeln unser Tool leicht auf andere Technolo-
gien angepasst werden. Abschlielend wird eine case study auf ein Open Source
Projekt durchgefiihrt.

Erklarung

Ich versichere, dass ich die vorliegende Arbeit selbstdndig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die
Arbeit in gleicher oder &hnlicher Form noch keiner anderen Priifungsbehérde
vorgelegen hat und von dieser als Teil einer Priifungsleistung angenommen
wurde. Alle Ausfilhrungen, die wortlich oder sinngeméss iibernommen wurden,
sind als solche gekennzeichnet.

Die Vereinbarung der Arbeitsgruppe fiir Studien- und Abschlussarbeiten
habe ich gelesen und anerkannt, insbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver- ja D nein D
standen.

Der Veroffentlichung dieser Arbeit im Internet stimme ich zu. ja |:| nein |:|

Koblenz, den Dezember 17, 2015

Contents

(1 _Introduction|

2 Related workl

3 Methodology]|

4 Domain-specific language|

Bl MOQUEH - - -« o o oot

6.1 Mainl.o

|7 Case Study]
[r.1 The Project| o

|8 Concluding remarks|

8.1 Thread to validity]

Acknowledgement

I would like to thank my supervisor Prof. Dr. Ralf Lammel for his support
during the progress of creating this thesis. Further I want to thank the whole
”devProv” team for the support and advice during the weekly meetings.

1 Introduction

Communication between developers is a key success factor for software projects.
In fact developers spend about 16 percent of their working time with talking
and consulting with other experts or developers [I]. The first step, that has to
take place before discussing the issue, is to find a person you can consult with
and has the required skill-set. That task can be very easy in a small team,
which is located close by or even in the same building. If teams from several
countries support the project, the team is large or there is a lot of fluctuation
the challenge becomes much harder. Especially in Open Source projects it can
be a problem to find the right expert while facing a development problem.
This work provides a tool that can help to overcome that problem by analyzing
the provided data of the Version Control System Git to assign technical skills
to a developer. A skill will be assigned, if a certain rule-based condition is ful-
filled. For the creation of that rules the focus lays on the Django frameworkﬂ
That framework is coded in Python and its aim is to "make it easier to build
better Web apps more quickly and with less code”. Our tool provides a Domain-
specific language, which is a subset of Python, to define rules in an easy but
yet safe way. These rules will dynamically be executed and the result will be
saved. The rule creation process can use the Content-, Filename-, ParseTree-
and Directory-Filter that can be composed over logical operations like and, or
and not.

Therefore, this work tries to answer the question, if it is possible to automat-
ically extract the skills of the developers in a large Django project, which is
hosted on GitHub. Often developers help themselves with the use of the blame
feature of GitHub to find out who to ask. This, however, is just a limited help
because it does not provide a history and it is just limited to one file. Fur-
thermore the starting point is another. If you are using the blame feature, it
is already known what file has to be changed or what file is a good example.
But to get there is not in particular easy if you are working on a project with
a few hundred or thousand files. It would be by far easier to search for specific
skills like migration and you would directly see who has done the most in that
context and what files could serve as an example. That is a non trivial task
because you have to answer two questions first. 1) When does a developer has
knowledge about migration or any other specific skill? 2) How do I identify the
developers that have such a skill? The first question was answered by defining
rules that identify key features or operations that tell that a developer has cer-
tain skills. By finding developers that have performed an operation that has one
of those key features the second question was answered. Both questions have to
be solved to provide a solution for the main research question.

The result will finally be a tool, that can take as input any Django project on
GitHub and provides a list of skills that were used in this project and the con-
tributors that have experience with a certain skill. That tool will be coded in
Python and it will provide a SQLite database file, that holds all informations
of the analysis. Further mining techniques can be applied to that dataset like
searching for skills that two developers usually have in common. An additional
output will be a set of rules that map different operations to a skill.

First of all, the related work to that topic will be discussed. After the ground-

Lhttps://www.djangoproject.com/

work has been discussed a chapter will describe the methodology and finally the
approach followed to find and at the end set up the rules that identify skills in
the Django framework. Furthermore an explanation will be given on how we dis-
covered interesting projects on GitHub and why the Django-Oscar project was
chosen. The next chapter gives a description of the domain-specific language
for the rules. After that a short overview of the high level design of the tool will
be given. If the concepts and a rough understanding about the acting together
of the different components were set, the next chapter will go into details of
the implementation. Finally the case study will be explained in detail, and the
result will be presented. A short discussion about limitations and future work
will close this thesis.

2 Related work

Software repositories have been used to study various aspects of the software
development process. A few of those studies have a focus on the developers and
the skills or experiences they have gained through working on the code base
saved in the repository. To access those data Version Control Systems (VCS)
are commonly used.

Furthermore a few papers worked on classifying software artifacts by the
used technology. For example De Roover [2] created a tool that mined object
oriented design patterns in Source-Code.

Software vulnerabilities are a great thread in the development of software sys-
tems. Therefore, Shin et al. [3] provided a tool that used different metrics to
measure code chain and complexity, to classify potential vulnerable files.

The social aspect of software development was studied as well. MacLean and
Knutson [4] used the commit history of the Apache Project for 2010 and 2011
to create a large graph with the different developers as nodes. The edges con-
nected those who have committed to the same file. Moreover further metrics
were collected.

Not just the communication aspect of the developers were analyzed but the
overall activity of developers on GitHub as well. This had the goal to study the
characteristics of the contributors. Therefore, Onoue et al. [5] used the target
project and the other projects of the contributors to get an overall activity pic-
ture of a developer.

Mockus and Herbsleb [I] calculated the amount of changed lines in a program
text, or delta as they call it, to calculate the amount of experience atoms (EA’s)
a developer has collected. An experience atom is an ”elementary unit of” ex-
perience. In the end an Expertise Browser (ExB) was coded to visualize the
relationships between code, documentation and other artifacts and the people
who gained experience in those.

Rysselberghe and Demeyer [6] used the data of the VCS to visualize which files
were changed on a specific date. They finally used that information to visualize
the commit history of the Tomcat repository over a specific period of time to
interpret the plotted graphs and gain insight into the software evolution.
Alonso et al. [7] approach differs from the previous since they visualized the
commits from contributors into specific folders in the Apache HTTP WebServer
project. The amount of commits were used to calculate the experience of spe-
cific users which was later visualized, illustrating through the size of the font
how often a skill was used.

Not all of the provided works just focus on the VCS. Bhattacharya et al. [§]
added in their approach the bug tracking system to get a deeper understanding
of the different roles a person has in an open source project. Finally a graph
was build with the collected metrices and mining techniques were applied on it.
Teyton et al. [9] provided a tool and a Domain Specific Language (DSL) to
define skills by specific modifications to a file. To elaborate, it provided a con-
tent, path, modification and a tree filter. Those filters could be composed in
the DSL, based on XML, to create rules. The program, however, is limited to
Java-Applications.

3 Methodology

Rule creation: One of the first steps was to find valuable rules that identify
skills of a developer. A research of literature to that topic did not provide a
useful result for our task because the roles of the developers were either at a
level that was to high like Tester, Software Architect, Developer (and so on) or
were too specific on a particular project. The roles or skills should be applicable
for every project in the Django domain and further should focus on the skills of
the developers. Therefore another way to get rules had to be found.

Two approaches were chosen. First the Django tutoriaﬂ and documentatiorﬂ
were analyzed. For example the documentation was used for the migration
process to identify operations that implicit that skill. This was later used to
combine different filters (see Chapter 5.2). Furthermore we had a closer look at
different Django projects on the Github repository to check if the created rules
would be satisfying and of any worth in a real world project. By looking into
the source code of those projects a more detailed insight into Django and its
features was gained. That was used as input for further examinations of the
Django Documentation. The complete process is shown in Figure[I] Finally, the

Suggested rules

:7 D‘

y_ .

. | .| validate the
analysi »- nles

: i :

Rules need
ancther iteration

<X> classify skills

.
L

D0 -

Django Dango Tutorial ; . Goaogle
Documentation Gl

Figure 1: Process of the rule creation

found skills were hierarchical organized to give a better overview and connect
and mark logical similar skills. To do so the Django documentation as well as
other sources, that were available through the web, were used. Chapter 7.2
describes more in detail how the skills were defined for the case study.

2https://docs.djangoproject.com/en/1.8/intro/
3https://docs.djangoproject.com/en/1.8/

Project selection: A project for the case study had to be selected too. The
list of ” Awesome Djangcﬂ’ on Github was used to identify interesting projects.
This list is based on the ” Awesome Python” El document which provides a list of
useful or popular libraries, frameworks and general software coded in Python.
By using that list it was pretty safe to say that the projects would be successful
and had a development time of a few years. This document was found by
searching on GitHub for the keyword Django. From that (long-)list a shortlist
containing five Django projects was selected. The criteria to be on the shortlist
were:

1. more than five contributors,

2. more than hundred commits,

3. typical for a Django based project,

4. time of development longer than 3 years and
5. a large impact of Django in the project.

Afterwards the projects were prioritized by the best distribution of the com-
mits from the developers and the general usability for an analysis based on the
project structure. Finally, the Django Oscar project was selected. It has enough
commits and contributors to provide a good dataset and about five contributors
that could potentially be compared. The Figure [2| visualizes the state of the
repository. Although the two main developers drove more than 80 percent of the
project, the distribution of the touched files was still acceptable. In fact, that
behavior seems to be common in small open source projects. In the Case-Study
section more details about the project will be provided.

\ Ay

Figure 2: Diagram for the distribution of touched files per user - with and
without the two dominant contributors

4https://github.com /rosarior/awesome-django
Shttp://awesome-python.com/

10

4 Domain-specific language

Layout: The analysis of the repositories is based on rules. Those rules can
be described as an injective function that takes a LogicalOperation with argu-
ments and returns a skill (Figure [3). The logical operations themselves are

rule: (LogicalOperation, arguments) — Skill
Skill € (ID x EA)

arguments € (mode x path x content x dif)
1D, path, content, dif € String

EAeN

mode € {A, M, D}

Figure 3: Definition of the rules as mathematical function

composed through the combination of filters and other logical operations. A

possible EBNF notation for the definitions of those rules is defined in Figure [4

There are also other possibilities to implement the rules, but for that demon-

stration a definition similar to chained function calls was used. An example of
a valid rule following that grammar could be:

And(LeftOr(FilenameFilter(’z’, %y’), ParseTree(’a’, ’a’)), ContentFilter(’f’, ’q’))

(LogicalOperation) = (operator)’(*(expr)’, (expr)’)’
(expr) = (filter)
| (LogicalOperation)
(filter) ::= 'FilenameFilter(’(args)’)’ | ’ContentFilter(’(args)’)’

| "ParseTreeFilter(’(args)’)’|
'DirectoryFilter(’(args)’)’ | 'None’

(operator) = "And’ | 'OR’ | "LeftAnd’ | 'RightAnd’ | 'LeftOr’ |
'RightOr’ | 'Not’

9

(args) = String (°, (args))*

Figure 4: Definition of an example grammar for the rules

As the grammar shows, there exist four types of standard filters, that can be
further customized over the arguments (args): ContentFilter, ParseTreeFilter,
FilenameFilter and DirectoryFilter. Those filters were selected as default filters
because of two reasons. On the one hand, the related work of Teyton et al. [9]
and Alonso et al. [7] gave reasons and arguments to use those and on the other
hand while creating the rules for Django those filters were necessary.

The FilenameFilter analyzes the filename, as the name says, to check if a con-

11

dition is fulfilled. Besides that, we can also check if the commit took place into
a specific directory. That one is handled by the DirectoryFilter. Furthermore,
we are able to analyze the content or the diff of a specific file. That is where the
ParseTree and ContentFilter come into play. They differ in the way they ana-
lyze the content. The ParseTree filter takes the semantic structure of the code
into account whereas the Content-Filter just does a plain search for keyword or
a regular expression.

How much experience or knowledge a developer has in a certain skill is measured
by the amount of experience atoms he has collected. This paper will use the
definition by Mockus and Herbsleb [I]: ”Experience atoms are elementary units
of experience. Experience, we assume, is the direct result of a persons activity
with respect to a work product, enhancing it or fixing a problem. The smallest
meaningful unit of such changes is an EA.”

Logical operations will finally merge the experience atoms collected by the fil-
ters using different strategies.

Semantic of filter merging: The result of the filters will be returned to
the logical operations such as And, Or, Not, LeftAnd, LeftOr, RightAnd or
RightOr which take those and decide what to return. A preferred return value
can be set by using the left or right version of an operation. Those are designed
to either return the result of the filter on the right or left side if both options
are given. That option is especially useful if one of the filters gives a deeper
inside into a skill or is more concrete. An example for the use of an operation
like the RightAnd or LeftAnd could be, if one filter is just used as a condition.
Consider you are searching for added lines to a class that inherits from Model.
To be able to determine if it is the the model class you are searching for, or
if it is the part of another package you want to check the imports. To do so
you can use the ContentFilter to check if the phrase "import XYZ” is part of
the file. The ContentFilter, however, is just there to make sure that it is really
the searched class. Therefore, the return of that filter does not really matter as
long as it returns something else than None. In that scenario you can specify
that the ParseTree filters should return its result if both apply by using a Left
or RightAnd.

A similar case can be constructed for the use of a LeftOr. Consider you are
combining two ContentFilter. One that searches for an old version and one that
searches for a new version of a string. That could apply, for example, due to
a refactoring that led to the rename of a variable. If there happens to be the
new version, you perhaps want to return the new version, otherwise you want to
return the old one. That scenario can be implemented due to the use of the left
or right version of the Or where the new string will be setup as the dominant
side.

However, there are scenarios, especially if they are combined over an Or oper-
ation, that would cause a bias if they define a dominant side. Therefore, the
normal rules will return the average value of both filters. That is the best avail-
able solution because it is a compromise between the maximum and minimum.
The minimum and maximum would both be imprecise in an Or operation, if
just one filter would have a result. Figure [5] tries to demonstrate that. F1 is a
filter that tends to return a larger value than the filter F2.

Thus it is evident that, the minimum performs more worse than the average, if
the dominant side suddenly becomes zero. The maximum does perform almost
as good as the average. The disadvantage of this is, that small changes to the

12

weaker filter have no impact to the output. The average would make those ob-
servable because it weights both sides in the same way and thus both changes
will have an affect. Therefore, the average is better and fairer and it was used
in the calculation.

Operation Example
Minimum F1 — 200 Or F2 — 0 = 200
F1 — 200 Or F2 — 20 = 20
Maximum | F1 — 200 Or F2 — 20 = 200
F1 —-00r F2 — 20 =20
F1 — 200 Or F2 — 100 = 200
F1 — 200 Or F2 — 198 = 200
Average F1 — 200 Or F2 — 0 = 100
F1 — 200 Or F2 — 20 = 110
F1 — 200 Or F2 — 20 = 110
F1 —-00rF2 —20=10
F1 — 200 Or F2 — 100 = 150
F1 — 200 Or F2 — 198 = 298

Figure 5: Comparison of different operations for the combination of results

13

5 Design

The system is designed by composing three different parts which are rules, mod-
ules and libraries. It further provides a main program that uses the three parts
and implements the main algorithm or business logic. In the following three
sections the layout of those will be explained in detail. During the design phase
following philosophies were used. First of all, the focus was to develop simple
and small code (KISS principleﬂ). The functions, modules and libraries should
be small (maximal twenty lines per function) and hence be easy to comprehend.
If there happened to be a requirement that did not fit logically into an existing
module or library a new one was created. We adhered to the principle of Sep-
aration of Concerns [I0]. In the structure of the project all of those parts and
even the elements in the parts are located in different folders and subfolders.
The aim is to have a folder for all the related files and further have subfolders
to distinguish between those. As a result, all related files can be found in the
same directory and hence the locality principle was followed.

5.1 Modules

Git RuleEngine
+get_next_commit() +load_rules()
+retrieve_commits(path) +execute_rules(*args)

Main
SQLClient
CreateOutput 1 ’
——— +add_raw_data(data)
+create_output() +uses +set_up()
+database_to_object()
+get_skills_from_user_sum()

Figure 6: Diagram for the layout and dependencies of the modules

A module is a Python source code file, that encapsulates a specific function
and provides an interface to call it. The modules will mainly be called from the
main program so that there are just a few dependencies between those. In fact

Shttp://people.apache.org/ fhanik/kiss.html

14

one module has a dependency to another module. The relation between those
are shown in Figure [f] However, the aim of the design is to make the modules
as loosely coupled as possible. That way ”the probability that [...] a system can
be learned, ported, modified and extended more easily” increases [11].

The project contains four modules that extend the functionality of the program.
The Git module has an interface to access the commits sorted by time. It
further provides a lot of details about the commit like the contributor and the
diff. Another module is the SQLClient module that provides functionality to
access a SQLiteZﬂ database. Especially it is able to persist specific objects into
the database and map them back into object form. The tool uses a SQLite
database since the output will just be a single file that can be easily shared
to other people and further no separate server has to run on the client or at
a remote host. To be able to execute rules a RuleEngine module dynamically
loads all the existing rules, makes sure to execute them and returns the collected
result. The rules are Python files that follow a specific schema. Last but not
least, a specific module will create the output in the form of HTML files. To be
able to retrieve all the different data, it imports the SQLClient module. That
module has specific functions to support that module. To be able to retrieve
all the different combinations of data it imports the SQLClient module that
has an interface with functions that that module has to call. Removing that
dependency would force the main module to run a lot of specific SQL queries
to hand them over to the CreateOutput module. A cleaner design is to import
the SQLClient module directly.

5.2 Rules

Rules are an important part of the system. Hence they define the skills a con-
tributor has. Therefore, there is a specific location, specified in the configuration
file, that contains all the rules. The rules themselves are composed through the
combination of filters and logical operations. Both expressions are realised over
the definition of a class in Python. This has the advantage compared to XML
that they are easier to read, maintain and further functionality could be added
like the transformation of input.

The implementation is similar to the composite pattern [I1], with the difference
that it allows compositions of different types. In fact, for both types (Filter,
LogicalOperation) an abstract superclass exists from which all the concrete def-
initions have to inherit. The class LogicalOperation can contain instances of
itself or zero till two instances of the Filter class. Or in other words: It can con-
tain two elements which are either of type Filter or LogicalOperation or both.
The apply() method will finally walk down the complete constructed chain and
merge the results of the filters.

The rule itself just contains one object of the type LogicalOperation. All of those
logical operations like And, Or , Left/Right-And/Or and Not follow different
merging strategies of the result of two filters (Chapter 4 explained those). The
design aims to give the creator of the rules as less restrictions as possible.
Rules are represented through a specific class that inherits from the BaseRule
class. Therefore, the tool knows that it is safe to call the match method of
the super class. The match method will simply call the apply function of the

Thttps://www.sqlite.org/

15

BaseRule

+match(*args)
+BaseRule(expr, applicable)

Rule

1
[:5 0.2 : +expression

LogicalOperation
+left_side 1 0.2 | Filter
+right_side “ul
+apply()
Or And | There are ContentFilter | There exist
more more filters
operations

Figure 7: Class diagram for the layout of the rules

defined logical operation, which was part of the construction of the rule. The
child class can overwrite the match and perform some transformation of the in-
put if necessary. The filters that are default implemented so far are: Directory-,
Filename-, Content- and ParseTree-Filter. The design of the complete chapter
is visualized through the UML class diagram in Figure [§] In that diagram the
Rule class is a placeholder for an actual implementation of a rule.

5.3 Libraries

Libraries collect functionality that will later be used by different modules or
rules. On a high level we can distinguish between two kind of libraries.

1) The libraries that simply define objects that aggregate facts that will be used
and saved into the database. There are four of those types, as the Figure
shows, the User, GitCommit, File and Skill class. An interesting decision was
to create a new File object for every version of a particular file in the version
control system. As a result, the amount of created objects increased a lot but a
more in depth analysis can be performed and insight gained. For example the

16

RawData

+getColums Tolnsert()
+getValues Tolnsert()
+get_table()
+get_primary_key({)
+set_primary_key({)

skill \
n

+8kill: String GitCommit

+experience: Int|~——_n | kila +commits User

+name: String +timestemp: Time | "7 = | -
+loc: Int n 1| +message: Message | n 4 +Name: String
+numberOfCommits: Integer

+HileVersior

Figure 8: Class diagram for the layout of the data

data could be used to show the evaluation of skills since every version points
to a set of skills it contains. Figure [J] gives an example of a dataset where that
observation can be made. At first the file model.py just contained one skill. Af-
ter another commit not just another skill was added to the file but the previous
skill was used more heavily as well. Thus we can see how the file and the used
skill develop over the time.

With the awareness of that feature the creation of a new file object per com-
mit seemed to be reasonable. After all data that are aware of their historical
development over the time were retrieved.

FileVersionld Name LOC | Commitld || Skillld Name Experience | FileVersionID
12 model.py 12 2 1 Model/Data 5 12
13 setup.py 14 2 3 Model/Data 10 14
14 mode.py 20 3 4 Model/Admin 3 14

Figure 9: Example of FileVersion and Skill table

2) The Libraries mainly providing functionality are the filters, logical oper-
ations and finally the libraries used by those two types and other parts of the
project. The filters itself implement an object oriented interface to call specific
functions inside another library. Those libraries are just a collection of differ-
ent useful functions. They are separate from the filters to allow other parts
of the code to call their functions as well without creating a filter. Therefore,
the design allows to easy create and use plain libraries from everywhere in the
program but still provides a clean and easy interface for the rule creation that
abstracts from the implementation details.

17

6 Implementation

After having given an overview of the design this chapter aims to provide some
interesting details about the implementation. The complete implementation can
be found on Bitbucketf]

6.1 Main

The main program is set up of a few very simple steps. First of all, it reads the
configuration file to determine where the rule folder, database file, Git repository
and the output directory are located. Those values will be handed over to the
right places. After that, it calls the initial process of the different modules and
libraries if necessary. Finally the setup phase is finished and the main loop
starts. The first step is to ask the Git module for all values of the next commit.
Those values will be used to create the data-storing objects which will be saved
into a SQL database through the interface of the SQL-Module after the creation.
Afterwards it will walk two times over all the files in the commit. The first walk
updates the inheritance tree which contains the current state of the class layout
and their inheritance structure. The second time the RuleEngine module is
called with the mode, filename, content and diff as argument which will execute
all the rules with those arguments and compose the result. This process avoids
that the order of execution of the rules and files has an affect on the result. Then
the main program saves the results into the database through the SQLClient
module. Once the loops are finished the results are available. However, they
are just available in the database at this point. Therefore, the output module
will be called which plots the database into easier to read HTML files.

Anofle” ot

Translats data
inb thedata-
torngofjec

Save result

HTUL Fibs:

Gatnetzommit

() oad Seluprules and
cerfiguratonfie moclues H -oadnles

Python fle fhat
Corfuralicn e Parame's fer Teprset s
mochibs and
liraries

Setp Becute s Savedzaoajeet
Inheriane:
Tree

e Dafibse abes
Alcannis
InherianceTree Pl inconnt
o)

execued

Main Module

Conmits

Figure 10: BPMN diagram for the main algorithm

8https://bitbucket.org/Freddy92/bsc.-developer-profiling/src

18

6.2 Rules

Each rule refers to a certain kind of layout. It has to inherit from the BaseRule
class, which has the abstract method get skill string. That method returns
the name of the skill defined by the rule. Besides that, they have to tell the
base class via the constructor what logical expression that rule represents. The
base class itself implements the match logic and returns the Skill object, if the
match of the rule was successful.

Layout of skills: The skills are clustered in a hierarchical approach and
hence each skill is assigned to a root category. This will be represented through
a string similar to a path definition in a filesystem. It starts with the category
and combines them with the other categories using a slash ” /7 and finally ends
with a particular skill. So basically the form is category/subcategory/skill or
with concrete values: Model/Data. Per definition the skills can always just be
found at the end of the chain. That means that the category descriptions can’t
be a skill itself but rather describes the skills that are in its cluster.

The problem with that layout is that it is not normalized. in fact it is not in the
INF, [12] and therefore it would be hard to update a database, if a change has
to be applied in the structure of the skills. The data in the database, however,
never claimed to be correct at any particular moment in the future but just
represent the state of skills for a specific amount of rules at a specific point in
time. Every change in a rule would result in a different output on a new run of
the program. Therefore, an easy to change dataset is not really a requirement
for the design. The layout provides the benefit that a user can easily understand
and read the database. A rule just has to return a string which is convenient.
The database itself, as well as the Python standard environment, provides a lot
functions to manipulate and search in or for a string. As a result, a request can
be easily made that searches for a specific skill or all skills of a category e.g.
database.

Experience calculation: The rules themselves use the filters to extract the
experience of a user in a specific domain. Those filters can be found in the
library folder and will return the experience a user has in a specific context,
measured by the amount of experience atoms. So the type of an experience
atom is an integer.

There are different options how the amount of atoms can be calculated by the
filters. They can be calculated by the number of

1. found strings or regular expressions in a file,

2. found strings or regular expressions in a diff log,

3. lines added in the diff or

4. added lines to a specific area of the source file e.g. to a specific method

A filter can be configured to use a specific calculation method. The configura-
tion will take place over a parameter in the construction. Figure [I1] shows the
mapping between filters and calculation methods. The logical operators will get
these values and compose a final result.

Filters: The filters provide an easy interface to call the libraries (Chapter
5.3) that collect functions that logical fit to it. One of the arguments of the
filter construction specifies, through a string, what function of the library the

19

Filter Measurement of experience atoms
Parse Tree 4
Content 1,2
Filename 3
Directory 3

Figure 11: Filters and the way the calculate EAs

filter should execute. Therefore, the libraries can change their implementation
and even names without causing any problems in the rules. In fact, just the
filter has to adapt to the changes. As a consequence, the project is easier to
maintain.

Furthermore the rules become a lot easier to read since the logical operation
will be composed through the creation and chaining of different objects. That
would not be possible in a not object oriented way. Figure [12| shows the imple-
mentation of an example rule.

During the construction other filter specific options could be set as well. For
example the ParseTree-Filter provides two options that specify its internal be-
havior.

To summarize, the filters encapsulate the logic that calls the subroutines inside
a library. As a result, that code stays outside of the rules and thus the rules
stay small and easy to comprehend.

Another information a rule has to set up is on what Git operations it should be
invoked. There are three kind of options which are add, modified, renamed or
deleted.

The following code (Figure shows an example of a rule that describes the
skill Migration which is a subtype of the database category. It used the logical
operation to combine the Content-Filter and the Parse-Tree-Filter. Of course
you could combine it with more in detail filters as well.

6.3 Libraries

The Inheritance Tree library has the purpose to build up a tree structure that
aggregates the inheritance structure of the system. Internally it is basically a
Python dictionary, whose key is the name of the class and its value is a list of
all the classes it inherits from. If we want to know if a class X is the subtype of
another class, it simply walks recursively over the Inheritance Tree starting with
the key X and adding all values to the execution queue till it reaches an end or
finds the searched base class in it. The Inheritance Tree, however, doesn’t parse
or is able to read the Python source code. For that the ParseTree library +
comes into play. It uses the Python AST modulﬂ which is part of the Python
standard library, to parse Python source code and finally extract the class name
and base class names. Those will either be stored in the Inheritance Tree or be
given as an argument to it, to find out if it inherits from a specific class. Another
use of the parse tree library is to find functions with a specific signature in a
provided Python code. A side effect of this implementation is that it does not
always correctly tells the end of the class but rather says the class ends at the
beginning of the last expression.

9https://docs.python.org/2/library/ast.html

20

import sys
sys.path.append("../")

from library.Rules import BaseRule

from library.Rules.Operations.And import And

from library.Rules.Filters.ParseTreeFilter import ParseTreeFilter
from library.Rules.Filters.ContentFilter import ContentFilter

class MigrationRule_(BaseRule.Rule):
def __init__(self):
regex = r’ ((import (django.db.)?migrations) | (import (.)+, migrations))’
ptfl = ParseTreeFilter("Migration")
ctfl = ContentFilter(regex, "regex_anywhere")
expr = And(ctfl, ptfl)
super (MigrationRule_, self).

__init__(expr, ["A", "M"])
def get_skill_string(self):
return "Database/Migration"

Figure 12: An example of a rule

That library itself uses our Diff library. The Diff library has the purpose to read
the diff format and returns all the added lines to a file. That result will then be
used to determine if the person has added something to an interesting function
or class.

As we have discussed in the Design chapter the second way to search for content
is by using a plain content search without bothering about the structure of the
code. To achieve this the Content library has implemented a few functions to
search in a string. One is by regular expressions another is by the use of a sim-
ple string search. Two different algorithms are available for an efficient search.
The Python standard search and an implementation of the Knuth-Moris algo-
rithml™] There exist two versions of each function. One that returns a boolean
value and another that returns the number of matches.

The Filename library provides some functions to analyze the filename. It pro-
vides the ability to search for an regular expression or for the occurrence of a
string in a specific part of the name e.g. the start, end or middle of it.

As mentioned earlier, another possibility is to connect the location of a direc-
tory to a specific skill. That is why the Directory library provides a function to
check if a path is a subpath of another.

All classes that save data that have to be persisted into a relation database like
Skill, Commit, File or Contributor objects have to inherit from the RawData
class. This class has mandatory methods that describe the layout of the rela-
tional table like name, columns and what values to be saved. This is an easy
way to provide an interface between mapping data from relational to object
form. In the program itself just objects will be used and it will never be asked

Ohttp://www.cs.jhu.edu/ misha/ReadingSeminar/Papers/Knuth77.pdf

21

for just a specific column in the table.

The Content-Filter and logical operations will be discussed together with the
rules. They indeed are libraries as well but they logically fit in the rule location
better.

6.4 Modules

The Git logs are accessed by the GitModule through the Giththoxﬂ library.
The repository will first of all be pulled or if it does not exist cloned. There
were two reasons to work on a local repository. On the one hand it is faster
because it does not have to use the, compared to a disk, slow network to get all
the data and second the GitHub Web API is limited to a to small amount of
requests per hour. The module will first obtain all commits and save important
informations into a stack. That data structure was chosen to assure that the
oldest commits are looked at first. The order of execution is important to assure
that the Inheritance Tree is valid.

To deal with added and deleted lines of code it will simply split commits, which
modified files, into two parts. First it calculates the normal diff and then it cal-
culates the deleted lines by changing the order in the diff calculation. Thus the
4+ ‘will appear as - and vice verse. The advantage is that the code now logically
just has to deal with adds and hence can apply the same logic of skill assignment
for deleted and added content. Another hazard, that occurred during the work
with Git, were merge and pull requests or other constructs that could lead to
a commit with multiple parents. Once that happens, GitPython returns more
changed files than the GitHub webpage revealed. Since Github should always
reflect the result of the tool some fixes had to be applied. So the subroutine
check file in_commit(...) was added. As a downside, even through caching,
the speed of the application decreased. The correctness of the application has a
greater value, though. Finally the stack will be decreased by returning all files
and their content and diff for each commit.

The RuleEngindEI simply scans the directory, which is specified in the con-
figuration file, for all filenames that end with ”.py” and writes them into a
” _init.py_ 7 file, assigning as "all” the list of filenames. Afterwards it sim-
ply imports the complete directory. The class name of the rules is by definition
the filename appended with an underscore. Hence, after importing from the
directory we can use that information to instance all the classes, which inherit
from BaseRule and call the match method.

The result of the program will be stored into a relational database and plotted
into different HTML files. Thus the result can easily be examined in a browser.
The data is plotted in the HTML format using the CreateOutput module and
the jinjaﬂ library. It provides an interface and a template language for Python.
To visualize all those different fragments this module has a dependency to the
SQLClient module. The latter one implements specific functions to retrieve
those data from the database.

The SQLClient module as mentioned earlier, provides the functionality to access
a SQLite3 database by using the Python sqlite3 modulﬂ Furthermore it pro-

Hhttps://pypi.python.org/pypi/GitPython/1.0.1
2https://goo.gl/mqPMQn
B3http://jinja.pocoo.org/docs/dev/
Mhttps://docs.python.org/2/library /sqlite3.html

22

vides functions to save all objects that inherit from RawData (see Chapter 5.3)
into the database or update those. Optimizing the combination of a relational
and object oriented form is the guiding principle for the implementation. Thus
the objects will also have attributes that are not persisted into the relational
database. The main purpose of that is to create an object layout that is similar
to a linked list and hence allows a quick navigation. In general the design tries
to fit the tables into an object and not the other way around which is the reason
why the layout is still normalized.

6.5 Environment and Tests

The program uses Make for build and dependency management. It further uses
pip to install the required Python packages. To get all the dependencies to
Python libraries a simple make install execution is enough. Besides that there
is also a script that setups the table structure into the database file. It executes
internally a .sql file that contains all the SQL commands to create the tables.
That file can also be used to create the schema for any other relation database.
Furthermore, a script runs all the test cases that it finds by simply walking over
all existing Makefiles and executing the label test. The whole project contains
about 180 test cases. Most of these are unit tests that are basically just testing
a function. Some of the tests setup an own database executing the table schema
and finally saving the objects into it.

Another interesting part is that all rules implemented for the case study are
tested as well. Some of those even use the input of real source files of the
django-oscar project as input, ensuring that the rules work in a real world
scenario. For the implementation of the test cases a library which uses the Test
Anything Protocol (TAP)E is used.

A configuration ﬁlﬂ customizes the program. It further creates logs to track
down errors after or while executing the program.

L5https://testanything.org/
L6https://goo.gl/iR8Z6¢

23

7 Case Study
7.1 The Project

Django OscarE is an open source e-commerce framework implemented using the
Django framework. It aims to have an easy to customize core functionality and
hence be a good choice for all kind of e-commerce applications. It has gained
up to 145 contributors in five years of development. During all that time 6349
commits were made, most recently in Sept 2015. Thus we can say that the
development process is still ongoing. The size of the project right now is 135,3
MB and it contains 1852 files.

7.2 Skills

oM
ES
T

(KnowledgeManagementj

Admininterface

HTML

)

Buildmangament

vCcs

Django
Deployment

I
i

Figure 13: Identyfied skills in a Django project

As discussed in the methodology chapter we have collected a few skills and
their category by examining the Django framework. Figure [I3]shows the rough
layout in a mind map were a child node (leafs) should be interpreted as a skill.
Naming of the skills: The name of the skills were found and defined with

IThttps://github.com/django-oscar/django-oscar

24

the help of the Django documentation and tutorial. This sources were used
to create a (long) list of filenames, folders and classnames. The long list was
reduced to to a short list of candidates by applying criteria like number of men-
tions, probability that it is used in a variety of projects and with the goal to
get skills that represent a spectrum of different domains. The final short list
contained follow words: ModelAdmin, Model, TestCase, fixture, Form, Migra-
tion, ModelForm, MultiWidget, validate, Templates, Sql, url.py, ReadMe.mb,
.git, Wsgi.py and Settings.py. Some of the elements in the list are a bit messy
and inconvenient like for example MultiWidget. Therefore a more proper name
was found for some of those candidates with the help of the documentation. As
a result, the elements of the leafs were selected for the name of the skills. Each
of that elements corresponds to one of the names in the list.

After the skills were found a way to group or categorize them was needed. The
six groups were defined as follow:

1. Model: The class has Model in it and rule 2 does not apply
2. Forms category: If the class that the skill inherits from imports from forms
3. Test category: If the skill has something to do with testing code

4. Database: An operation on the database is performed that is loosely ab-
stracted by Django

5. Administration: They deal with the configuration of Django or another
tool in development

6. Other: It stores anything that does not fit to the above rules

Definition of the rules: Due to the design of Django and the Python

language itself many skills are defined by the inheritance of a specific class. For
example models or migration issues always have to inherit from a specific class
to achieve something in the Django framework. That is the reason why many
rules work over the ParseTree-Filter with the inherit option.
Setup for the case study: For the Case Study we have defined 17 ruleﬁ
Of those 14 were specific to the Django domain and 3 could be applied to any
Python project. The created rules can be found in the Appendix. An underlying
assumption of the case study is that the deletion or renaming of a specific file
would not indicate any skill. Those operations can be performed for different
reasons but do not require any knowledge of the underlying implementation.
The file does not even have to be opened. Therefore, it was not concerned as
an analyzing case. If we would take those cases into account every delete would
give the committer a tremendous amount of experience atoms. In the worst
case the amount of lines. That does not seem to be fair. Note that this case
differs from removing just a few lines of code. That would be classified as a
modification and hence would execute the rules. After all the code was changed
by a contributor for sure. The same applies to the adding of a file to Git. That
way it can be sure, that the contributor, who added the file, added lines to it as
well. Otherwise it would be empty and would return zero skills anyways. The
Figure [T4] sums up that paragraph.

Bhttps://goo.gl/PjO2P1

25

Operation Analyse

Adding File yes
Deleting File no
Renaming File no

Modifying File yes

Figure 14: Overview about the operations and how the tool deals with them

7.3 Validation

After the program and all the unit tests were successfully executed several ap-
proaches were followed to validate the result. First of all, the unit tests of the
rules were run with examples of the project to verify that the right skills have
been discovered. That way the rules can be tested based on real input and we
can be assured that the rules work properly.

Besides the automatic unit tests the manual verification of the program was
important. The first project to be tested with the code was a Django tutoriaﬂ
Once it was pretty sure that it works on that small project, the tool was ex-
ecuted on the Django Oscar project. By picking several commits and files, it
was checked manually if the result in the database was identical to the expected
value. The GitHub visualization feature supported this approach. Thus basi-
cally a few interesting files were selected and checked first if all the commits were
into the database and second if the changed lines really implicit the found skill.
In case the result is valid for all eighteen tested files it is pretty safe to say that
the program has no serious bug at the current time. Those manually checked
files were afterwards coded as Python test caseﬂ Therefore, it can easily be
checked if the result is still valid after a change in our tool . Furthermore those
test cases can be seen as a documentation of tested files.

Another approach would be to code an oracle like program that simply uses
some kind of grep for several keywords to find an independent reference value.
A closer look to that approach, however, revealed some weaknesses. For exam-
ple we could either be too optimistic or too pessimistic with the assignment of
a skill through the search of grep. If we search in every diff for the keyword
"Model”, we would get by far fewer hits because only the added lines count
and the base class was defined in a previous commit. On the other hand, if
we always look in the complete content of the file, that was touched during the
commit, we would get a far too positive result. Therefore, that approach is just
able to give a rough boundary and nothing that has a greater worth for the
validation. A more complex oracle would increase the probability of a bug in it
as well. Consequently, it won’t be a valid source and hence we decided to test
manually if the results are valid. To make sure that for every person it is easy
to verify that the test cases are correct, all of those follow a specific schema and
directly link to the corresponding parts on GitHub. With that transparence I
want to make sure that it is easy for everyone to validate the result. The im-
plementation of the program can lead to unexpected behavior in some special
scenarios. If that is the case for a testcase a detailed explanation will be given
as comment. For example, a commit that just moves a file won’t be counted as

Lhttps://github.com/Chive/django-poll-app

2Ohttps://bitbucket.org/Freddy92/bsc.-developer-profiling/src/master/DjangoDevProf/test /t/

26

commit hence it does not identify a skill. See the following code for an in depth
example. A list of tested files can be found in the appendix and now we will
show the example layout of such a file:

nmnn

The file that will be tested is ’tests/..... /reviews/model_tests.pyy’

URL: https://github.com/django-oscar/django-oscar/blob/master/tests/
.../reviews/model_tests.py

nmnn

from TAP.Simple import *
from 1ib import help

plan(10)

filename = ’tests/integration/catalogue/reviews/model_tests.py’
help.load_database()

nmnn

The file was was touched by five commits and three users.

nmnn

results = help.get_commits(filename)
eq_ok(len(results), 5 , "Did we got the commits as expected")
dict = {}

for (id, date, name, user) in results:
if user in dict.keys():
dict[user] += 1
else:
dict[user] = 1
nnn

Three users have committed to that file

win

eq_ok(len(dict.keys()), 3 , "Three users have commited to that file")
values = sorted(dict.values())

eq_ok(values[-1], 2, "Make sure that one use has two commits")

nmnn

The file has the skill Test/Generell . Eight relevant lines were dropped
and eight lines were added.

Github: https://github.com/django-oscar/django-oscar/commit/0alba60[

27

..109e930b9505¢7b

nmnn

_, name, experiece, _ = help.get_skills(4030 , filename) [0]

eq_ok(name, "Test/Django" , "Check if the right skill was found")
eq_ok(experiece, 8 , "There should be eight ea")

_, name, experiece, _ = help.get_skills(4030 , filename) [1]

eq_ok(name, "Test/Generell" , "Check if the right skill was found")
eq_ok(experiece, 8 , "There should be eight ea")

#Just two skill found Generell and Django as expected?
ok(len(help.get_skills (3305 , filename)) == 2)

7.4 Result

That are the collected values of skills for the David Winterbottom

Skillname Count|Proportion of skill
Administration/VCS 134 |0.881578947368
Forms/HTML 1205 |0.559684161635
Validation 10 |0.113636363636
Forms/Model 1827 |0.543426531826

Administration/Buildmangament|300 |0.660792951542
Other/DjangoConfiguration 3005 |0.880715123095

Database/Fixture 4923 10.926595143986
Other/Templates 27140(0.424168542136
Test/Django 12703|0.728424795

Model/Admininterface 770]0.820895522388
Database/Migration 58 |0.148717948718
Test/Generell 16091/|0.671409496787
Model/Data 20683(0.612920432657

Other/KnowledgeManagement 4962 (0.576039006269

Figure 15: Skills of the contributor David Winterbottom

RQ: What can be found out about the contributors?
After an execution time of about 80 minutes the program has filled the database
with the corresponding values. Let’s have a look to the profile of the project
owner David Winterbottom. He has a total number of 3159 relevant commits.
We define relevant commits as the ones that did not just move a file from a folder
to another because that operation does not really need a skill. 5688 is the count
of relevant commits. As we can see, that user has made about 55 percent of the
commits of the whole project. Looking at the results we can easily calculate the
average experience atom count per skill of David Winterbottom: the average
is 0.6042 and standard deviation is 0.241. It is now interesting to see that

28

the Migration and Validation skills from him are below the standard deviation
(Figure . So in that skills he seems to be not as dominant as in the other.
On the other hand, he has done more than 90 percent of the fixture related
stuff. In general, we can see a correlation between a user who has contributed
the most commits and a user who happens to have the most skills. To get those
values you can run the SQL command shown in Figure

Select Skill.name, count(Skill.experience)
from Gitcommit,FileVersion, Skill
where
Gitcommit.UserId IN (
Select UserId from Contributor where name=’David Winterbottom’
)
and FileVersion.CommitId = GitCommit.CommitID
and Skill.FileVersionId = FileVersion.FileVersionId
group by Skill.name;

Figure 16: SQL command to get all the skills of David Winterbottom

Most surprising of the discussed things is that just about 15 percent of all the
skills in the migration domain were collected by him. That is an interesting fact
because it shows that there seems to be some kind of task sharing and another
expert exists for the migration domain. If we have a look at the developer "Maik
Hoepfel” we can see that he has collected about 74 percent of the migration
experience atoms. As a result, it is obvious to say that he is the Migration
expert in that project.

To summarize an interesting insight was gained due to the data because task
sharing or domain experts could be identified which would not be possible by
simply analyzing the commits. After having a look to the contributors more
details about skills itself will be discussed now.

RQ: What skills do the most contributors nominal have?

Another interesting aspect is to look how many people posses a certain skill
(Figure . That is an interesting question because it could help to identify
important persons that are not really replaceable so quickly by another member
of the team. To do so we can run the SQL command in Figure

Select Skill.name, count(DISTINCT Contributor.UserId)
from Contributor,Gitcommit, FileVersion, Skill
where
Gitcommit.UserId = Contributor.UserId
and FileVersion.CommitId = GitCommit.CommitID
and Skill.FileVersionld = FileVersion.FileVersionId
group by Skill.name;

Figure 17: SQL command to identify how many users have a skill

The result shows that the complete database related skills are just dis-
tributed between a few users. Only 5 respectively 7 users worked on the ex-

29

Administration/Buildmangament |6
Administration/VCS|11
Database/Fixture|7
Database/Migration|5
Forms/HTML |25

Forms/Model|32
Model/Admininterface|14
Model/Data|66
Other/DjangoConfiguration|20
Other/KnowledgeManagement |57
Other/Templates |77
Test/Django |34
Test/Generell |44
Validation|6

Figure 18: The distribution of the skills

pertise field of migration and fixtures. On the other hand, the Model/Data skill
that describes the data was used by 66 users.
In fact, that is a pretty interesting thing. A lot of people tend to know or have
experience in working with the database model but wouldn’t be able to migrate
the changes to the database or/and providing interesting start values. An ex-
planation for that is that the most people worked on the surrounding methods
of the model objects and less on the definition of the data layout. In the next
step we want to analyze this a bit more in depth and check how it relates to the
number of commits.
RQ: Do more commits lead to a diverse or different experience dis-
tribution?
The majority of contributors have only one commit which is typically in many
other open source projects of the same size. In that project 164 out of 190 con-
tributors have less than five commits. Comparing the distribution of the skills
with the people contributing very frequently we define those very active people
as developers with more than 40 commits to the project i.e. 27 users.
We now plot two tables ordered by the most nominal used skills of that group
(Figure [L9). After that is done the Levenshtein distance [I3] will be used to
calculate how similar the output of those two queries is. If they are similar we
can say that the number of commits is not correlated to the skill distribution.
To get a value between 0 and 1 we have to normalize the similarity function

by using:
1— (LevenshteinDistance(abede fghijklmmn,abdce f ghijlnkm) 0.58

12 is the number of used clﬁaracters. Furthermore an online calculatol®] was
used to calculate the value. The result is that the similarity is 58 percent. Thus
more than the half is equal for both groups. So it can basically be concluded
that there are in general skills that are more and less popular. There does not
seem to be a skill that is in particular possessed by people who work very long

2lhttp://planetcalc.com/1721

30

a Other/Templates 58 Other/Templates

b Model/Data 50 Model/Data

c Other/KnowledgeManagement | 46 Test/General

d Test/General 32 Other/KnowledgeManagement
e Test/Django 23 Test/Django

f Forms/Model 22 Forms/Model

g Forms/HTML 15 Forms/HTML

h Other/DjangoConfiguration 14 Other/DjangoConfiguration

i Model/Admininterface 9 Model/Admininterface

j Administration/VCS 8 Administration/VCS

k | Administration/Buildmangament | 4 Database/Fixture

1 Database/Fixture 4 Validation
m Database/Migration 3 || Administration/Buildmangament
n Validation 3 Database/Migration

Figure 19: The result of the distribution around the skills

on the project. Furthermore the maximal difference between position of letter
in the one and the other word is 2 or in percent 17. To sum this up: In this
project there is no strong correlation between using a certain skill and having
done a lot commits. Finally, we want to identify how skills and commits are
related.

RQ: How many commits carry a skill?

Before closing this discussion lets look how many commits exist that do carry
a skill of any kind. The result of the SQL statement in Figure [20| returns the
numbers 3768 and 5727. Hence about 65 percent of the commits do carry a skill
of some kind. Therefore we can conclude that a way to analyze and classify the
other commits had to be found in the future.

Select count(Distinct x.CommitId)

from
Gitcommit as x,
FileVersion as y,
Skill as z

where

x.CommitId = y.CommitId
and z.FileVersionId = y.FileVersionld
Union Select count(Distinct x.CommitId)
from
Gitcommit as x,
FileVersion as y
where
x.CommitId = y.CommitId;

Figure 20: SQL command to identify how many commits are connected to a file
and how many commits exist

31

20
16
12
11
11
10
10

NN W W w ot

BB —— = 50@ -0 0 AT ®

8 Concluding remarks

First of all, we used the Django documentation and some successful Django
projects to find interesting rules, that define if a user has experience with a
certain skill. Those rules operate on four different kind of filters which are
Filename-, Directory-, Content- and ParseTree-Filter. The first two operate on
the path of the file to determine, if it indicates a specific skill. The two follow-
ing work on the content of the file. It either takes the syntactical structure into
account or just the plain uninterpreted content.

Those rules were implemented using Python and classes that were defined in li-
braries. Besides that the tool defines other helpful libraries that could be helpful
for the process of analyzing. Additional modules to deal with Git, Databases,
the loading of rules and the creation of output were implemented. Finally a case
study on the Django Oscar project was performed. The result was validated
using specific test cases to determine, if the result matches our expected obser-
vation. As a result, it can be said that it was possible to automatically extract
skills from a Django project on GitHub.

8.1 Thread to validity

The approach is based on the assumption that a user is experienced with a
certain skill, if he did many changes in a file . Although many papers are based
on that theory, it has to be verified for this case. Thus Django developers in
a large project should be asked for a statement about their knowledge, which
will be compared to the actual result of the program. If we find a correlation
between the result of those two approaches it can be stated that the assumption
is correct.

Logical operations have to merge the results of their filters. That could take
place through defining a dominant side like it is done with the left or right ver-
sion of an operation. However, if the dominant side of an Or operation does not
apply the other side will be returned. If that side returns in average larger val-
ues than the dominating one you will get a falsified result. That commit seems
to be more relevant than the others but in fact it is not. Therefore, almost
equal strong filters should be combined. Another bias is that the equal weight
operations use the average. That can in some scenarios lead to the return of
unexpected values.

In addition, the rules are usually static. They can’t consider all possibilities.
For example the directory fixture is not considered, but the folder fixture would
be. Therefore, an adaption of rules for a specific project have to be made to
keep precision. Otherwise some skills wouldn’t be detected.

Moreover, the output just gives absolute values. There is no real comparison
over a complete domain. We can just say in that particular project that person
seems to have the most skills of all users. But it cannot be determined how this
relates to the average. Therefore, a lot of projects should be scanned, so that we
can see the collected experience atoms in a larger picture and finally see what
a reasonable value of experience would be.

Moreover, the work is just limited to Git, so that in the end we just see the
commits a person has done. Some parts of the code could be auto generated
by a plugin or be copy pasted from some other sources, though. Those would
still be counted as skill, although the developer does not really need to have any

32

knowledge of that particular skill.

Last but not least the rules could be a lot more restrictive. Not every modifica-
tion of a class that is of the type Model really indicated that there would be a
skill of the model domain. An example for that could be the simple renaming
of a variable or even just the correcting of a grammatical error in the comment
section. Thus the rules and commits should be analyzed in a previous step to
drop those biases before the execution of the rules takes place.

8.2 Future Work

Some skills like the installing of plugins to the IDE, setting some environment
variables or installing software packages tend to change the state of the machine
without modifying the VCS. Docker |E| is a new tool used to create containers
to make the developing and deploying process easier. In fact it provides an
additional layer of abstractions. More and more projects and companies use
Docker for the deployment of their applications. It further provides a repos-
itorﬂ where those containers can be uploaded quickly. A future work could
be to have a more in depth look to this software and decide if valuable skills
could be mined by analyzing those container repositories and who made what
changes to it. Perhaps that approach can help to define and identify more skills
and roles in a software project. Especially for deployment, administrations and
configuration of IDE plugins.

Although we have extracted a lot interesting data of the VCS and the source
files, we in fact just displayed the data. A more interesting task would be to
take the data and apply machine learning or data mining techniques to it. Some
questions that could be applied in that context could be:

e What skills do developers usually have combined?

e Can we say what skills are most needed due to the specific phase of the
development

e Detect more skills by finding patterns in files and commits with the help
of the data

Furthermore the rules should be able to learn. Instead of just statically ap-
plying the rules it should be able to learn dynamically for example by comparing
how similar a file is to a file that actually has that skill. That way the rules
could be applicable to projects without modifications for the specific context.
In the best case it would automatically detect that a fixture and fixture folder
are similar and therefore should be treated in the same way.

The current state of the program is stable. There is still a lot room for improve-
ment, though, if it comes to the way the filters work. The ParseTree-Filter
could for example work more detailed and in fact even filter out the lines in a
class that really identify a skill. To make that filter mechanism perfect a signif-
icantly more developing time is required. The return of that investment would
be more precise results.

To find all the functions that determine a skill would be a tremendous work.

22https:/ /www.docker.com/
23https://hub.docker.com/

33

Perhaps there is a way to extract automatically interesting variables or func-
tions out of the Django documentation. If a method will be called in a class
that inherits from Model and in fact that method has a match in the Django
API description of Model, it can be stated that it would be a skill in that expe-
rience category. Furthermore an efficient way of data cleaning could be applied
to delete content that is leading to wrong conclusions. One of those could be to
detect copy pasted or generated code. That should be deleted by the program
before the actual analysis starts and hence make sure that the results will just
assign the right skills. To do so also in that context data mining and machine
learning techniques could be applied to identify ”bad” parts in the code and
drop them.

34

35

9 Appendix

9.1 Rules
Value Filter Skill Link
Settings.py Filename Configuration Django Docu |
Wsgi.py Filename Administration /Deployment Docu |
Model Parse Tree]
LeftAnd Model /Data Docu
import models Content
Admin.py Filename
Or Model/Admininterface Docu
ModelAdmin Parse Tree
Templates/ Directory Docu |
RightOr Other/Template
{% Content Docu
url.py Filename Other/Router
Import forms Content
RightAnd Forms/HTML Docu
Form Parse Tree
Testcase Parse Tree
LeftAnd Test/Django Docu
import TestCase Content
def test_....(self, ..) Test Parse Tree
or Test /General Docu
Test Filename
import migrations Content
RightAnd Database/Migration Docu
Migration Parse Tree
Fixture Directory
Or Database/Fixture Docu
initial _data.(xml or yaml or json) Filename
.sql Filename
RightAnd Database/SQL Docu
Insert ... VALUES().. Content
(MultiWidget Parse Tree
Or
def decompress(self, value)) ParseTree method Forms/Widget Docu
And
import Widgets Content
Import ValidationError Content
RightAnd Other/Validation Docu
def validate ParseTree method
Docs Directory Other/Knowledge Managmen
.gitignore Filename
Or Administration/VCS
.gitattributes Filename
Makefile Filename Administration/Buildmangament

Figure 21: All rules we defined

36

https://docs.djangoproject.com/en/1.8/topics/settings/
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
https://docs.djangoproject.com/en/1.8/topics/db/models/
https://docs.djangoproject.com/en/1.8/intro/tutorial02/
https://docs.djangoproject.com/en/1.8/intro/tutorial02/
https://docs.djangoproject.com/en/1.8/topics/templates/
https://docs.djangoproject.com/en/1.8/topics/forms/
https://docs.djangoproject.com/en/1.8/intro/tutorial05/
https://docs.djangoproject.com/en/1.8/intro/tutorial05/
https://docs.djangoproject.com/en/1.8/topics/migrations/
https://docs.djangoproject.com/en/1.8/howto/initial-data/
 https://docs.djangoproject.com/en/1.8/howto/initial-data/
 https://docs.djangoproject.com/en/1.8/topics/forms/
https://docs.djangoproject.com/en/1.8/ref/validators/

9.2 Tested Files

Filepath
tests/functional /basket /manipulation_ tests.py
sites/_fixtures/comms.json
tests/integration/shipping/model _method _tests.py
src/oscar/apps/order/migrations/0003_auto 20150113 1629.py
src/oscar /apps,/dashboard /reports/forms.py
src/oscar/apps/promotions/models.py
src/oscar/apps/catalogue/admin.py
src/oscar/templates/oscar/checkout /shipping_address.html
src/oscar/core/compat.py
src/oscar/apps/shipping/abstract_models.py
src/oscar /apps/dashboard /partners/forms.py
src/oscar/apps/dashboard/catalogue/forms.py
sites/sandbox /fixtures/books.computers-in-fiction.csv
sites/sandbox /fixtures/multi-stockrecord-product.json
tests/functional /customer/auth_ tests.py
tests/integration/catalogue/reviews/model _tests.py
src/oscar/apps/offer /abstract_models.py
src/oscar /apps/dashboard /partners/forms.py

Figure 22: All files we tested for the validation of the case study

37

References

[1]

A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative
approach to identifying expertise,” in Proceedings of the 22rd International
Conference on Software FEngineering, ICSE 2002, 19-25 May 2002,
Orlando, Florida, USA, 2002, pp. 503-512. [Online]. Available:
http://doi.acm.org/10.1145/581339.581401

C. De Roover, “A logic meta programming foundation for example-driven
pattern detection in object-oriented programs,” Ph.D. dissertation, Vrije
Universiteit Brussel, August 2009.

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEFE Trans. Software Eng., vol. 37, no. 6, pp.
772-787, 2011. [Online]. Available: |http://doi.iececomputersociety.org/10.
1109/TSE.2010.81

A. C. MacLean and C. D. Knutson, “Apache commits: social
network dataset,” in Proceedings of the 10th Working Conference
on Mining Software Repositories, MSR ’13, San Francisco, CA,
USA, May 18-19, 2013, 2013, pp. 135-138. [Online]. Available:
http://dx.doi.org/10.1109/MSR.2013.6624020

S. Onoue, H. Hata, and K. Matsumoto, “A study of the characteristics
of developers’ activities in github,” in 20th Asia-Pacific Software
Engineering Conference, APSEC 2013, Ratchathewi, Bangkok, Thailand,
December 2-5, 2013 - Volume 2, 2013, pp. 7-12. [Online]. Available:
http://dx.doi.org/10.1109/APSEC.2013.104

F. V. Rysselberghe and S. Demeyer, “Studying software evolution
information by visualizing the change history,” in 20th International
Conference on Software Maintenance (ICSM 2004), 11-17 September
2004, Chicago, IL, USA, 2004, pp. 328-337. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109 /ICSM.2004.1357818

O. Alonso, P. T. Devanbu, and M. Gertz, “Expertise identification and
visualization from CVS,” in Proceedings of the 2008 International Working
Conference on Mining Software Repositories, MSR 2008 (Co-located with
ICSE), Leipzig, Germany, May 10-11, 2008, Proceedings, 2008, pp. 125—
128. [Online]. Available: |http://doi.acm.org/10.1145/1370750.1370780

P. Bhattacharya, I. Neamtiu, and M. Faloutsos, “Determining developers’
expertise and role: A graph hierarchy-based approach,” in 30th
IEEFE International Conference on Software Maintenance and FEvolution,
Victoria, BC, Canada, September 29 - October 3, 2014, 2014, pp. 11-20.
[Online]. Available: http://dx.doi.org/10.1109/ICSME.2014.23

C. Teyton, M. Palyart, J. Falleri, F. Morandat, and X. Blanc, “Automatic
extraction of developer expertise,” in 18th International Conference on
Evaluation and Assessment in Software Engineering, EASE ’14, London,
England, United Kingdom, May 13-14, 2014, 2014, pp. 8:1-8:10. [Online].
Available: http://doi.acm.org/10.1145/2601248.2601266

38

http://doi.acm.org/10.1145/581339.581401
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.81
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.81
http://dx.doi.org/10.1109/MSR.2013.6624020
http://dx.doi.org/10.1109/APSEC.2013.104
http://doi.ieeecomputersociety.org/10.1109/ICSM.2004.1357818
http://doi.acm.org/10.1145/1370750.1370780
http://dx.doi.org/10.1109/ICSME.2014.23
http://doi.acm.org/10.1145/2601248.2601266

[10] P. Laplante, What Every Engineer Should Know About Software Engineer-
ing. CRC Press, 2007.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

[12] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377-387, Jun. 1970. [Online]. Available:
http://doi.acm.org/10.1145/362384.362685

[13] V. 1. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals,” Soviet Physics Doklady, vol. 10, p. 707, February 1966.

39

http://doi.acm.org/10.1145/362384.362685

List of Figures

il Process of the rule creationl 9
12 Diagram for the distribution of touched files per user - with and |
[without the two dominant contributorsl. 10
3 Definition of the rules as mathematical functionl. 11
|4 Definition of an example grammar for the rulesf 11
5 omparison of different operations for the combination of result 13
6 iagram for the layout and dependencies of the modules| 14
|7 Class diagram for the layout of therules| 16
18 Class diagram for the layout of the datal 17
9 bixample of FileVersion and Skill table| 17
10 BPMN diagram for the main algorithm| 18
11 ilters and the way the calculate I 20
[Anexampleofarule oo o i it 21
[13 Identyfied skills in a Django project| 24

114 Overview about the operations and how the tool deals with them| 26

15 Skills of the contributor David Winterbottoml 28
16 SQL command to get all the skills of David Winterbottom|. . . . 29
1 command to identity how many users have a skilll 29
(18 T'he distribution of the skills|. 30
19 _The result of the distribution around the skillsf 31
20 SQL command to identify how many commits are connected to |
L a file and how many commits exist |. 31
P Allruleswedefinedl. o oo vt i i 36
22 All files we tested for the validation of the case study|. 37

40

	Introduction
	Related work
	Methodology
	Domain-specific language
	Design
	Modules
	Rules
	Libraries

	Implementation
	Main
	Rules
	Libraries
	Modules
	Environment and Tests

	Case Study
	The Project
	Skills
	Validation
	Result

	Concluding remarks
	Thread to validity
	Future Work

	Appendix
	Rules
	Tested Files

