
Tests and Proofs: Papers Presented at the Tests and Proofs: Papers Presented at the 
Second International ConferenceSecond International Conference

TAP 2008TAP 2008
Prato, Italy, April 2008Prato, Italy, April 2008

Bernhard BeckertBernhard Beckert
Reiner Reiner HHäähnlehnle

edseds..

No. 5/2008No. 5/2008

Reports of the Reports of the 
FacultyFaculty of of InformaticsInformatics



Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung 
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen 
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle 
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des 
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur 
auszugsweiser Verwertung. 

 

The Reports of the Faculty of Informatics comprise preliminary results which will 
usually be revised for subsequent publication. Critical comments are appreciated by 
the authors. All rights reserved. No part of this report may be reproduced by any 
means or translated. 

Reports of the Faculty of Informatics 

ISSN (Print): 1864-0346 
ISSN (Online): 1864-0850 

Herausgeber /Series Editor: 
The Dean: 
Prof. Dr. Zöbel 

The Professors of the Faculty: 
Prof. Dr. Bátori, Jun.-Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. 
Ebert, Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,  
Jun.-Prof. Dr. Hass, Prof. Dr. Krause, Prof. Dr. Lämmel, Prof. Dr. Lautenbach, Prof. 
Dr. Müller, Prof. Dr. Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. 
Rosendahl, Prof. Dr. Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, 
Prof. Dr. von Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel
 

Volume editors: 
Bernhard Beckert 
Faculty of Informatics 
Universität Koblenz-Landau 
Universitätsstraße 1 
D-56070 Koblenz 
EMail: beckert@uni-koblenz.de 
Reiner Hähnle 
Dep. of Computer Science 
Chalmers University of Technology 
Rännvägen 6B,  
SE-412 96 Gothenburg, 
Email : reiner@cs.chalmers.se 

mailto:beckert@uni-koblenz.de


Preface

This volume contains those research papers presented at the Second Interna-
tional Conference on Tests and Proofs (TAP 2008) that were not included in the
main conference proceedings1.

TAP was the second conference devoted to the convergence of proofs and
tests. It combines ideas from both areas for the advancement of software quality.

To prove the correctness of a program is to demonstrate, through impeccable
mathematical techniques, that it has no bugs; to test a program is to run it with
the expectation of discovering bugs. On the surface, the two techniques seem
contradictory: if you have proved your program, it is fruitless to comb it for
bugs; and if you are testing it, that is surely a sign that you have given up
on any hope of proving its correctness. Accordingly, proofs and tests have, since
the onset of software engineering research, been pursued by distinct communities
using rather different techniques and tools.

And yet the development of both approaches leads to the discovery of com-
mon issues and to the realization that each may need the other. The emergence
of model checking has been one of the first signs that contradiction may yield
to complementarity, but in the past few years an increasing number of research
efforts have encountered the need for combining proofs and tests, dropping ear-
lier dogmatic views of their incompatibility and taking instead the best of what
each of these software engineering domains has to offer.

The first TAP conference (held at ETH Zurich in February 2007) was an
attempt to provide a forum for the cross-fertilization of ideas and approaches
from the testing and proving communities. For the 2008 edition we found the
Monash University Prato Centre near Florence to be an ideal place providing a
stimulating environment.

We wish to sincerely thank all the authors who submitted their work for
consideration. And we would like to thank the Program Committee members
as well as additional referees for their great effort and professional work in the
review and selection process. Their names are listed on the following pages.

In addition to the contributed papers, the program included three excellent
keynote talks. We are grateful to Michael Hennell (LDRA Ltd., Cheshire, UK),
Orna Kupferman (Hebrew University, Israel), and Elaine Weyuker (AT&T Labs
Inc., USA) for accepting the invitation to address the conference.

Two very interesting tutorials were part of TAP 2008: “Parameterized Unit
Testing with Pex” (J. de Halleux, N. Tillmann) and “Integrating Verification
and Testing of Object-Oriented Software” (C. Engel, C. Gladisch, V. Klebanov,

1 Bernhard Beckert and Reiner Hähnle (eds.). Tests and Proofs: Second International Conference,
TAP 2008, Prato, Italy, April 2008, Proceedings, LNCS 4966. Springer-Verlag, 2008.

iii



and P. Rümmer). We would like to express our thanks to the tutorial presenters
for their contribution.

It was a team effort that made the conference so successful. We are grateful
to the Conference Chair and the Steering Committee members for their sup-
port. And we particularly thank Christoph Gladisch, Beate Körner, and Philipp
Rümmer for their hard work and help in making the conference a success. In
addition, we gratefully acknowledge the generous support of Microsoft Research
Redmond, who financed an invited speaker.

April 2008 Bernhard Beckert
Reiner Hähnle

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

iv



Conference Chair

Bertrand Meyer ETH Zurich, Switzerland

Program Committee Chairs

Bernhard Beckert University of Koblenz, Germany
Reiner Hähnle Chalmers University, Gothenburg, Sweden

Program Committee

Bernhard Aichernig TU Graz, Austria
Michael Butler University of Southampton, UK
Patrice Chalin Concordia University Montreal, Canada
T. Y. Chen Swinburne University of Technology,

Australia
Yuri Gurevich Microsoft Research, USA
Dick Hamlet Portland State University, USA
William Howden University of California at San Diego,

USA
Daniel Jackson MIT, USA
Karl Meinke KTH Stockholm, Sweden
Peter Müller Microsoft Research, USA
Tobias Nipkow TU München, Germany
Andrea Polini University of Camerino, Italy
Robby Kansas State University, USA
David Rosenblum University College London, UK
Wolfram Schulte Microsoft Research, USA
Natasha Sharygina CMU & University of Lugano, Switzer-

land
Betti Venneri University of Florence, Italy
Burkhart Wolff ETH Zurich, Switzerland

Additional Referees

Michele Boreale
Roberto Bruttomesso
Myra Cohen
John Colley

Mads Dam
Andrew Edmunds
Viktor Kuncak
Rupak Majumdar

Karol Ostrovsky
Edgar Pek
Rosario Pugliese
Steffen Schlager

v



Steering Committee

Yuri Gurevich Microsoft Research, USA
Bertrand Meyer ETH Zurich, Switzerland

Organising Committee

Christoph Gladisch University of Koblenz, Germany
Philipp Rümmer Chalmers University, Gothenburg, Sweden

Sponsoring Institutions

Microsoft Research Redmond, USA
Chalmers University of Technology, Gothenburg, Sweden
University of Koblenz-Landau, Germany
ETH Zurich, Switzerland

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

vi



Table of Contents

Experiences from Testing a Radiotherapy Support System with
QuickCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Aiko Fallas Yamashita, Andreas Bergqvist, and Thomas Arts

Model Validation through CooML Snapshot Generation . . . . . . . . . . . . . . . 17
Camillo Fiorentini, Mario Ornaghi

Verification-based Test Case Generation with Loop Invariants and
Method Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Christoph Gladisch

Extracting Bugs from the Failed Proofs in Verification via Supercompilation 49
Alexei Lisitsa, Andrei P. Nemytykh

vii



Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

viii



Experiences from Testing a Radiotherapy

Support System with QuickCheck

Aiko Fallas Yamashita1, Andreas Bergqvist2, and Thomas Arts2

1 Simula Research Laboratory, Box 134, 1325 Lysaker, Norway
aiko@simula.no

2 IT University of Göteborg, Box 8718, 402 75 Göteborg, Sweden
{bergqvia, thomas.arts}@ituniv.se

Abstract. We present a case study on the use of lightweight formal methods for testing
part of a real-time organ position tracking system used in radiotherapy. Several proper-
ties were modeled and verified through automated test cases generated by QuickCheck.
QuickCheck was found useful in reducing the complexity inherent to testing medical
devices by detecting faults at system level, and assisting in the exploration of atyp-
ical errors that could later be analyzed and fixed in the system. We suggest that a
combination of lightweight formal methods and random test generation, supported by
automated simplification of test cases may represent a feasible option in the medical do-
main; particularly for those projects with high-pace development, a need for proof-based
techniques/tools for certification processes, and when the non-deterministic nature of
real-time devices demands the exploration/identification of heterogeneous fault sources.

Keywords: Lightweight formal methods, model-based testing, medical software, soft-
ware verification, software testing.

1 Introduction

With the increased use of software in medical devices, high demands on software
verification and analysis in the medical domain are inevitable. In many cases
formal methods are used to model medical devices [1], medical protocols [2], or
even entire systems [3]. Proofs are becoming an important aspect in medical
device certifications as organizations like the Food and Drugs Administration
(FDA) [4] and its European counterpart, Medical Device Directive (MDD) [5]
are moving from process-centered towards proof-based certification [6].

Nevertheless, full formalization of systems implies potentially high costs [7]
and, in some industrial contexts, it may constitute an unrealistic task. Yet after
the correctness of a model has been formally proven, its implementation still
needs to be tested. A combination comprising of lightweight formal methods
and testing has been proposed as a means for connecting the actual implemen-
tation and the formal properties of the system in a feasible and more direct way,
avoiding errors in implementation details [8]. Studies addressing the usage of
lightweight formal methods within different industrial contexts can be found in
current literature [9–12].

In this article we present a case study on the use of lightweight formal meth-
ods for testing an implementation of a medical device. The device (constructed

A. Fallas Yamashita, A. Bergqvist, T. Arts: Experiences from Testing a Radiotherapy Support System

1



by Micropos Medical [13]) is a real-time organ position tracking system used in
radiotherapy, i.e., a tumor is positioned in real-time in order to be able to accu-
rately deliver a dose of radiation. Part of this system was tested with QuickCheck
[14] as a master thesis project.

The software to determine the position of the organ is critical. Only the
intended area should be exposed to radiation, and any damage to surrounding
healthy tissue should be avoided. Proving correctness of the software is extremely
hard; radio signals are combined in order to determine a position. Imagine a
radio antenna of which the top determines the position. Even if the top is fixed,
the antenna can be in many different positions, all resulting in different radio
signals. Even worst, the same antenna position not necessarily results in exactly
the same signals each time one measures. Thus, we have deterministic software
that provides a lot of computations on radio signals and returns a measured
position. However, the software reacts very non-deterministic in a test setting,
since placing the antenna in a certain position, may result in different signals and
therefore slightly different measured positions. The algorithms for computing the
measured position are under constant improvement, still we want to be able to
ensure accuracy in any product that is released.

QuickCheck is a testing tool that randomly generates test cases from a given
model and supports automated simplification of failed test cases. Thus, in theory
we are able to generate test cases from the same specification that is used in to
formulate and prove correctness of the system. The study aims to explore the
potential contributions as well as the challenges of this specific set of techniques
(i.e. lightweight formal methods and random testing supported by automated
test case simplification) in testing a safety critical medical device, in order to
assess the viability of lightweight methods within the medical domain.

The paper is subsequently organized as follows: Sect. 2 introduces briefly the
context for medical device verification, proposing the necessity of integrating
test tools and formal methods in the medical industry. Sect. 3 details related
work to the approach used in the case study. Sect. 4 provides the motivations for
our approach, and a description of the case study; indicating the testing setup,
and the properties tested in the SUT. Sect. 5 describes the results and analysis
derived from this study. Finally, Sect. 6 specifies the conclusions reached based
on this study.

2 Verifying medical devices

Two primary approaches to the process of medical devices delivery are utilized:
process centered verification and artifact-centered verification [15]. Process cen-
tered verification is often described by standards that suggest a series of practices
for the medical practitioners to base the development of the safety-critical soft-
ware products on [16, 17]. However, there is a need for more artifact-centered

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

2



approaches as medical devices turn more and more sophisticated, complex and
wide-ranging; and general guidelines are proving to be insufficient for delivering
a safe product [18, 15].

The application of formal methods in medical devices supports this line of
action and could add significant confidence in the system by revealing errors
in both the system’s model and its implementation [19]. There are many suc-
cess stories regarding the use of formal methods in the medical domain, which
range from medical protocols [2, 20] to medical equipment controllers [21, 3] and
medical devices [1]. Studies elucidate the need of well-established processes that
include formal methods and ensure safe systems [22]. Despite the numerous ad-
vantages of formal methods, the actual implementation still needs to be tested
given the differences that could exist between the model and the implementation.
Furthermore, a testing process is a “must” in current certification processes reg-
ulated by medical authorities [23–25]. In our case study we had a mathematical
formula to compute the difference between a position and a measured position.
Given such a clear formal model, we liked to investigate how we could automat-
ically generate tests from that model. What is needed is a connection between
mathematics and the software in the implementation. We looked for a general
approach instead of a specific solution for this case, in order to be able to apply
the method to other parts of the system later on.

3 Related work

Our approach is based on a tool called QuickCheck, which is a property-based
testing tool that automatically generates tests from a specification and has the
ability to simplify failing test cases (or counter examples) automatically. Prop-
erties are modeled and used as input in QuickCheck in order to generate random
test cases. Although we use the term property-based, it is clear that QuickCheck
can be seen as a model-based testing tool, since it relies on a formal abstraction
of a system property in order to generate the test cases. Another definition that
may be applicable is specification-based testing, as we specify several aspects of
the system in the form of properties. In the subsequent text, we describe related
work in the area of testing (such as model-based testing, specification-based
testing, boundary-based testing, on-the-fly testing) as well as other associated
approaches in the field of formal methods (e.g. model checking).

Model-based testing (MBT) [27] is an approach that bases common testing
tasks such as test case generation and test result evaluation on a model of the
system. Examples of MBT can be found in [28–30]. Specification-based testing
on the other hand, tries to demonstrate that an implementation conforms to a
certain specification of a system. Some examples are [31–38]. Both approaches
can be considered orthogonal and most of the time well complemented with for-
mal methods. An attempt to establish a taxonomy for MBT can be found in [39].

A. Fallas Yamashita, A. Bergqvist, T. Arts: Experiences from Testing a Radiotherapy Support System

3



Boundary-driven testing as well as coverage-oriented testing are approaches that
can be found together with MBT and Formal Methods. Boundary-driven test-
ing selects values that are directly on, above, and beneath the edges of the legal
input and output values. In contrast to random testing, boundary testing may
require some expertise in order to select effective boundary cases [40]. Examples
of boundary-driven approaches can be found in [41, 42]. A study addressing a
combination of MBT and the coverage-oriented approach can be found in [43].

Model-based testing and Specification-based testing differ as white-box test-
ing and black-box testing. Given a model, one has insight in border cases that
occur during runtime (or simulation-time), whereas specifications only give bor-
ders that can be specified and do not consider borders that occur during runtime.
For example, a specification could state that input values should be in a cer-
tain range, a model of the computation of could reveal that a buffer is overflow
for specific input values, not necessarily the border cases of the given range.
We used QuickCheck in a Specification-based approach, trusting that random
generation of sufficiently many values would reveal errors. We are not actively
looking for border cases, since many of these cases are caused by how well the
radio signals can be interpreted, which cannot be read from the source code of
an algorithm or its model. Moreover, the algorithm for computing the values
is constantly improving and changing, therefore, the model would have to be
re-designed after each such change.

The properties we checked with QuickCheck were somehow side-effect free.
We send an antenna to a certain position, measure the position and compare
with the actual position. In that sense, we differ from a model checking approach,
where one may check that certain properties hold in a state, no matter which
path one chooses to get to that state. In theory, no matter from which direction
we reach a point in space, the computation should always return the same value
for the same position. This is, though, not true, but that is not because of
non-deterministic software, but because of radio signals not being deterministic.

Some may classify QuickCheck’s approach under the rubric on-the-fly test
generation, since it generates random test cases and verifies properties on the fly.
On-the-fly test generation has been used before in the verification of real-time
communication protocols [44]. This approach is considered suitable for real-time
systems, specially when the test case generation can react to the actual out-
puts of the SUT while running under the operation environment (Further on
we will explain how QuickCheck does this through the simplification of failed
test cases). Since real-time systems are characterized as being non-deterministic,
offline testing (the opposite approach to on-the-fly testing) is limited in its ca-
pacity to react to changes in the environment and identify faults that are linked
to such changes.

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

4



4 Case study

This section provides the details of the study. We start by describing the med-
ical SUT. Secondly, we present a description of QuickCheck and motivate our
approach for testing. Subsequently, we present the properties tested along with
a description of the testing set-up.

4.1 Position tracking device

The SUT is called 4DRT (Four Dimension Radio Therapy) and is a real-time
organ position tracking system intended for supporting radiotherapy. It is able to
locate the position of an organ in four dimensions, three-dimensional space and
time. This enables one to monitor the position of tumors in prostate cancer
patients and thereby helps to improve the accuracy of the radiation during
radiotherapy treatments.

The SUT is based on radio frequency transmission. The measurement of
the position is done through an implantable device in the organ (or nearby),
which acts as a transmitter. The transmitter emits a radio frequency, which is
captured by multiple receivers, typically arranged in a plate on the treatment
table under the patient (See Fig. 1). The software uses the signal captured by the
receivers as input to calculate the position of the organ. A set of floating-point
values (representing the measured signals) is continuously sent to the software.
The software maps the floating-point values retrieved from the Receivers to a
specific coordinate position in the real world. This coordinate position is given
in a coordinate system specific to the SUT, which has a predetermined range
for each axis (X, Y, Z) and two angles (Vy, Vz), i.e., rotation over y and z axes.
The “mapping process” or the algorithm for calculating the position uses a
mathematical model not discussed here due to disclosure agreements. The non-
functional requirement described in Table 1 explicates the accuracy required,
and it is expressed in terms of confidence intervals; i.e., positions calculated by
the SUT should be within a radial distance (in Euclidean space) of 2±1mm
from the actual position to ensure that the tumor receives radiation and not the
healthy tissue around it. That is, the calculated position should not divert from
the actual position with more than 2mm with a standard deviation of 1mm.

Table 1. Description of the functional requirement (and its corresponding non-functional requirement)
tested in the SUT

Functional requirement: The software component should calculate the 5D
positioning of the transmitter (X, Y, Z, Vy, and
Vz, where Vy is rotation around Y axis and Vz is
rotation around Z axis)

Non-functional requirement: The system should achieve 3D difference or radial
accuracy of 2 ±1 mm

A. Fallas Yamashita, A. Bergqvist, T. Arts: Experiences from Testing a Radiotherapy Support System

5



Fig. 1. View of the 4DRT system in a treatment environment. Elements such as the Linear Accelerator,
the implantable device, and the patient plate are depicted.

The software of the SUT is the result of migrating a prototype from LabView
[47] to a commercial platform language i.e., Microsoft .NET C#. Pseudo-code
describing the underlying algorithm for position estimation and the LabView
code were used for performing the migration. Even if the equivalence of the al-
gorithm implementation (between LabView and C#) can be reviewed through
code inspection, it is still a challenge to ensure correct behavior during its exe-
cution. Micropos Medical was mainly interested in a solution that may enable
testing in real life conditions and identify problems at system level. Due to signal
fluctuations that are dependent on the environment, on-site calibration is also
required. Micropos needs a cost-effective solution for performing system level
testing on a regular basis during development and after deployment.

4.2 QuickCheck and the proposed approach

QuickCheck is a tool that combines random test generation, with a flexible
language for specifying generators and the use of properties to verify test results
[8]. The properties can be written in a restricted logic, and then QuickCheck
can be invoked to test the property in a large number of cases. Properties are
specified in Erlang [48]. Among other things, one can quantify over sets and
express preconditions. For example, the property

prop_positive() ->

?FORALL({Pos1,Pos2},{coordinate(),coordinate(),

?IMPLIES(Pos1 =/= Pos2,

radial_distance(Pos1,Pos2) > 0)).

radial_distance({XP,YP,ZP},{XC,YC,ZC}) ->

math:sqrt(

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

6



math:pow(XP-XC,2)+math:pow(YP-YC,2)+math:pow(ZP-ZC,2)).

coordinate() ->

{int(),int(),int()}.

checks whether for two generated coordinates Pos1 and Pos2 that if they are not
equal, then there distance is positive. Here, FORALL and IMPLIES are examples
of logic operators provided by the QuickCheck library. QuickCheck generates
test cases according to the provided generators, in this case coordinates, which
only uses randomly generated integers in three dimensions. QuickCheck allows
focusing on the properties that code should satisfy, rather than on the selection
of individual test cases. As mentioned before, QuickCheck also performs the
automated simplification of failing test cases. Details concerning this last feature
can be found in [26].

Property-based testing. From a Risk-Based Analysis outset, verifying the
accurate position calculation is key in assuring a safe treatment delivery. A
QuickCheck property was formulated and corroborated through execution (See
Fig. 2). The property should hold if the radial distance (See Formula 1) between
the position estimated by the software and the actual position is less or equal to
2mm. The advantage of QuickCheck over other tools in this context is that the
input to QuickCheck (the property modeled) is very close to the mathematical
specification that one would expect. Hence, it is easy to inspect that the right
aspect of the SUT has been tested) (cf. Fig 2).√

((Xp −Xc)2 + (Yp − Yc)2 + (Zp − Zc)2) (1)

Random testing. In terms of coverage in the underlying test domain, it
is clear that due to the nature of the software we are testing, the process of
requesting only one single position calculation will cover the critical path of the
modules. Thus, if the transmitter is located in {0,0,0,0,0} and then we request
the position, we would have full code coverage without revealing any failure
in the SUT. Therefore, we need to test many data points. The test set-up is
such that we mounted an antenna to a kind of three-dimensional plotter. We
can instruct this plotter to move the antenna to a certain position, specified in
millimeter precision and we could then turn the antenna in a certain angle. The
parameters needed to place the antenna in a given position are given in natural
numbers, which correspond to the number of millimeters the antenna is moved
away from the origin. Typically an area much larger than a potential tumor is
tested, say a cube of 200 millimeters on each side. Together with a potential
angle of the antenna, this results in about 720 million positions to test. Moving
the antenna in a certain position takes up to 7 seconds, thus testing all positions
is rather impractical. Moreover, the same position may return different values at
different points in time, thus testing positions more than once is not superfluous.

A. Fallas Yamashita, A. Bergqvist, T. Arts: Experiences from Testing a Radiotherapy Support System

7



System level testing. Given the simplicity of the property (the accuracy)
that we want to test and the dependency of the whole SUT to correctly pass a
large number of tests; we estimate that we can catch all failures that otherwise
would be caught by unit testing. Thus, it seems that starting with system level
testing and leaving out unit testing is cheaper in this case than designing ded-
icated tests for each unit. Because of the simplicity of the underlying formula
for correctness (Formula 1), the ease with which this formula can be expressed
in QuickCheck, and the kind of errors we can expect (typical for floating point
handling), we decided to use system level testing as the only way of testing.

4.3 Testing environment and tested properties

The testing set-up. The lab setting used during testing consisted of a trans-
mitter, a receiver, software and an additional mechanical device called Auto
Setup3 to which the transmitter is attached. QuickCheck generated coordinates
as integer values within a range supported by the SUT. The coordinates were
then used to control the Auto Setup, which, in turn, moved the transmitter to
a corresponding position. The software of the SUT calculated the position of
the transmitter and “sent” the calculated X, Y, Z, Vy, Vz coordinates back to
QuickCheck. These calculated values are floats. QuickCheck then determined
the radial distance between the initially generated position and the position cal-
culated by the SUT. A test fails if this distance is more than 2mm. The property
is depicted in Fig. 2. QuickCheck communicated via TCP/IP with a sort of re-
quest broker that we implemented in C#. This broker receives commands from
QuickCheck and requests the Auto Setup to move the transmitter to a specified
coordinate and then calls the software component of the SUT to request the
position estimation. Details of the testing set-up are provided in [49].

prop_within_margin(Margin) ->

?FORALL(Coordinate, antenna_coordinate(),

begin

move_antenna_to(Coordinate),

Position = read_position(),

radial_distance(Position, Coordinate) =< Margin

end).

Fig. 2. Accuracy Property tested in QuickCheck

Accuracy Property. In Fig. 2 antenna_coordinate() is a function that
generates a random triplet of x, y and z coordinates and a pair representing the

3 A simplified version of a Coordinate Measurement Machine (CMM)[52], referred to here as Auto
Setup is used. A CMM consists of a workspace where parts (a sensor and a mechanical assembly
for moving the sensor around the workspace) are fixed. In our case, the sensor consists of the
transmitter and the mechanical assembly situates the transmitter at specific coordinates indicated
through an external software interface.

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

8



angles of the transmitter relative to the antenna’s y and z axes. The generated
value is bound to the variable Coordinate. First the transmitter is moved to a
certain position. The function called move_antenna_to(Coordinate) returns a
value when the transmitter has reached the desired point. After that the most
recently estimated position is fetched from the SUT, it is then compared to the
actual coordinates. Whenever a test fails, i.e., any of the actions fails or the
result of the last inequality is false, then QuickCheck will automatically search
for simplified failing test cases. An example of a generated simplification of fail-
ing test case constituted one of the border cases i.e., {0,0,0,0,0}. QuickCheck
randomly generated each test from a QuickCheck property such as the one pre-
sented in Fig. 2. Typically, integer values specifying millimeters were used to
move the transmitter to a given position (the Auto setup can be moved in steps
of 1mm). QuickCheck could for instance generate a test from the property in
which the transmitter is steered to position: X=58, Y=127, Z=94, Vy=0, Vz=0.
The estimated position: X=58.15106462, Y=126.9147189, Z=94.82734652, Vy=-
2.582979671, Vz=-3.070729491 is then registered. The distance to the real value
is computed: 0.84533759 and since it is less than 2mm, the test passes success-
fully4.

QuickCheck uses a uniform distribution in its random generation of coor-
dinates. For the purpose of testing the software, we are satisfied by that. The
non-functional requirement in Table 1 does indicate, however, to use a normally
distributed set of sample points and to generate a normally distributed sample
from them. Since patient data is unavailable at this point, we decided to be
stricter than that and use a uniform distribution, requiring an accuracy of 2mm,
without leaving space for points in one standard deviation. We analyzed the few
failing tests (i.e., those with a distance larger than 2mm) to see by how much
they deviated.

Symmetry Property . The SUT works under the assumption that the un-
derlying mathematical model used by the position calculation algorithm is sym-
metric. This means that given a coordinate, a similar accuracy on the corre-
sponding extrapolated coordinate is attained with SUT (i.e. if the transmitter
position is {36,41,73}, the SUT will give similar results in accuracy as if the
transmitter was located in the extrapolated value {134,139,171}). This is pre-
sented in property prop_symmetric()which is depicted in Fig. 3. We verify that
the accuracy distance between a given coordinate value and its corresponding
extrapolated coordinate is less than 1mm. We used 1mm as the delimitation
value for practical reasons. The value was experimentally determined by a test
simplification that helped us to determine that the major difference between
results of extrapolated coordinates in the SUT didn’t exceed 1mm.

4 It is important to point out that the Vy and Vz are only considered for performing the position
calculation and not for computing the radial distance. Hence the radial distance shown in the
example only contemplates X, Y and Z.

A. Fallas Yamashita, A. Bergqvist, T. Arts: Experiences from Testing a Radiotherapy Support System

9



prop_symmetric(Margin)->

?FORALL(Coordinate,antenna_coordinate(),

begin

Extrapolated = extrapolate(Coordinate),

move_antenna_to(Coordinate),

Pos1 = read_position(),

move_antenna_to(Extrapolated),

Pos2 = read_position(),

Distance1 = radial_distance(Coordinate, Pos1),

Distance2 = radial_distance(Extrapolated, Pos2),

abs(Distance1 - Distance2) =< 1

end).

extrapolate({X,Y,Z})->

{?upper_x - abs(X-?lower_x),

?upper_y - abs(Y-?lower_y),

?upper_z - abs(Z-?lower_z)}.

Fig. 3. Symmetry property tested in QuickCheck

5 Results and Analysis

In this section, results from the testing process, perceived benefits from our
approach, and possible areas for improvement are presented and discussed.

5.1 Test results

Within the given coverage range, the SUT provided even better accuracy than
that specified by the non-functional requirement. One large sample of generated
tests had a mean of 1.528505mm for the radial distance, with a standard de-
viation of ±0.477921, where 87% of test cases passed and 13% failed; from the
failed test cases, 11% had between 2mm and 2.4mm for radial distance and 2%
between 2.4mm and 3.4mm. Others were even more accurate and only 2% of the
test cases failed, displaying a radial distance of 2.02mm to 2.04mm. The set of
test cases proved that the SUT had better accuracy than the requirement, and
we felt very satisfied considering the results above.

Most of the failures were detected in the first test cases QuickCheck produced
from the main property described in Sect. 4.3. In all cases, it was possible to
trace the failures back to the code. So, adequate corrections could be performed.
Typical issues involved floating point operations, type conversion, and the use
of erroneous types in the drivers’ interfaces. For instance, we found out that the
hardware driver for the Auto Setup did not accept decimal points as parameters
in one of the interfaces. This problem was identified when using QuickCheck for
sending the coordinates to the Auto Setup and it was observed that the latter
did not move the transmitter as expected. We could trace this problem back
to a division operation in the Auto Setup interface, which was performed prior
to sending the coordinates to the actual Auto Setup controller. This division

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

10



produced decimal values occasionally instead of just integers. Consequently, the
Auto Setup only moved when the resulting division was a whole number.

Another problem came about because of the use of incorrect casting oper-
ations (i.e. truncating decimals instead of rounding), which was detected while
observing a set of failed test cases showing a very similar radial distance. We
found that conversion in LabView is implicitly managed, in contrast to C#,
which requires a specific conversion method.

In addition, errors due to misinterpretations of the pseudo-code (i.e. dec-
laration of global variables and static values interpreted as local and dynamic
variables) could be detected by observing failed test cases that showed a very
big radial distance. A similar error was found in the same test cases, where an
incorrect constant value for one of the algorithms was used (due to the mistakes
during the migration process where an outdated version of LabView code was
used for a specific module).

The aforementioned issues are typical when performing migration from two
different platforms (in this case from LabView to C#), where some assumptions
(such as typing and management of decimal values) in the old platform are not
longer valid in the new platform. They are also related to a typical situation
in the medical domain when specifications regarding interfaces for hardware
drivers as well as software COTS (components off the shelf) are not so clear
[50]. QuickCheck facilitates code refinement and simplifies the task of detecting
those errors (mostly within a couple of property executions).

Note that we found all these errors by specifying just one property and
generating random test cases from it. Therewith, the work of creating test cases
is dramatically simplified in contrast to more traditional testing approaches.
Also note that most of these errors are implementation errors and no matter
how well the model is formally verified, such errors can appear.

It was moreover possible to determine which of the underlying mathematical
models (See Section 4.1) for calculating the position support a given radial
accuracy. Whenever a new model is introduced, it is possible to test it with
QuickCheck and its adequacy being visible almost immediately. For instance,
one day we had introduced a model, which was stated to provide better accuracy
than the previous one; we ran QuickCheck on it and found a coordinate with
an unacceptable accuracy. Hence, the model was further improved before being
introduced again.

Issues in the communication protocol between QuickCheck and the C# re-
quest broker were also detected with QuickCheck. Incidentally, a problem due
to the overwriting of instructions from the C# request broker into the Auto
Setup driver was detected while executing tests (this overwriting issue resulted
in a series of incomplete test executions). We found that the Auto Setup driver
demands a lapse of 40ms in order to process one instruction and read the next
one.

A. Fallas Yamashita, A. Bergqvist, T. Arts: Experiences from Testing a Radiotherapy Support System

11



5.2 Perceived contributions from the approach

Improved coverage in regression testing. We perceived that it was possible
to introduce changes in other parts of the SUT (e.g. hardware, since this prod-
uct is evolving constantly; making devices smaller and faster) and afterwards
use QuickCheck to perform high-level testing. This enabled us to detect any
incongruence or errors that might result as a consequence from those changes.
The same situation applies to code enhancements performed in order to improve
performance. Some data processing in LabView could be implemented in C# in
a more efficient way. We run QuickCheck to make sure that these enhancements
in the code gave the same results as the original algorithms written in LabView.
Furthermore, the coverage of the side effects resulting from changes introduced in
the software (or hardware) is more comprehensive with QuickCheck since it gen-
erates new random test cases each time. In that sense, QuickCheck constitutes
a good asset for a product that is constantly evolving (a scenario very typical
in medical device development [51]) in contrast to regression testing which will
run the same tests-suites every time.

Improving the system quality. An example of how QuickCheck helped
in improving the quality of the software occurred when we utilized various math-
ematical models to see which ones gave better results (as explained previously in
Sect. 5.1). Furthermore, having a formal specification of the SUT that can actu-
ally be run and corroborated constitutes a significant advantage for certification
processes (as pointed out by [6] and mentioned in Sect. 2).

Cost effectiveness. Faults related to testing the mathematical model (ac-
curacy checking) were detected after on average 12.85 test cases, and abnormal
cases were detected after approximately 78 tests. It is very unlikely that one
would manually write test cases with the same results, but it shows that several
cases would have to be written for a good test suite, whereas here we only write
one property once.

Each time a test case is run, the transmitter must be positioned before per-
forming the measurement, and this is a rather expensive task if an automated
tool does not support it. In our case, it took in around 5-7 seconds per each test
case; depending on to which position the Auto Setup was moved. QuickCheck
requires relatively little amount of effort, and supports repetitiveness and gen-
eration of new values every time.

Support for detection of atypical faults. Sometimes you want to run
the property for a longer period and use extreme values (including boundary
cases) on the test parameters in order to find atypical results. By extending the
margin tolerance (increasing the radial accuracy limit), we could detect atypical
cases related to the transmitter angles (angles very close to the negative or
positive borders brought about significant radial distances). For instance, when
we modified the accuracy property and set the accuracy tolerance up to 6mm; an
apparently normal position (in the sense that it was within the coverage-range

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

12



of the SUT) resulted in a radial distance of almost 6mm. Following some more
tests, we found out that one version of the underlying mathematical model used
in the SUT was sensitive to strongly angled positions (in terms of Vy and Vz).
This finding lead to adjustments in the mathematical model in order to improve
its robustness against angling. It must be mentioned that the parameters used
for performing this type of testing exceeded the limits of what could be called a
normal scenario (e.g. test parameters derived from real patient data).

5.3 Areas for improvement

We have identified a number of limitations in our case study. This study does
not cover the necessity of having a given distribution (in this case a normal
distribution) and usage of sample data from patients.

When a test fails, we want to obtain the coordinates that give the highest
possible measurement fault, in other words, for which the distance to the position
is greatest. This is not possible to perform automatically with the current version
of QuickCheck. QuickCheck provides simplification of input data but cannot yet
generate data depending on the outcome of particular tests.

It is worth mentioning that one of the limitations of working in a lab is the
presence of sporadic radio transmission noise due to research activities taking
place at nearby companies. This also enforces a sufficient number of tests in
order to assure the robustness of the SUT in less than ideal situations. We can
store the test case sequences in QuickCheck and redo the property execution
in order to see any behavior that can be influenced by the environment and
signal fluctuations. This would be particularly good if we want to improve the
robustness of the system to external noise factors, which is very common in an
environment like a hospital.

Throughout this study, we have observed a potential for QuickCheck to sup-
port statistical functionalities (e.g. to test confidence intervals). Some planned
features for future releases include control or specification of the number of test
cases, and generation of test cases by sampling from a defined set of data (i.e.
real patient data). Also, improving the logging capabilities for QuickCheck could
notably expand the potential of using QuickCheck for test results analysis. Log-
ging not only failed test cases but also the asserted test cases would potentially
upgrade the tool.

6 Conclusion

We have described a case study on testing a medical device by using a for-
mal model as a basis for the automatic generation of test cases with the tool
QuickCheck. We found a number of errors in the code we developed and were
able to spot inaccuracies in prototype models. Early detection and correction of

A. Fallas Yamashita, A. Bergqvist, T. Arts: Experiences from Testing a Radiotherapy Support System

13



these errors has lead to a high quality product being developed by the medical
company at which the case study was performed.

This case study assembles adequate conditions for using formal models. The
model is simple, clear and based on a mathematical formula. Verifying medical
devices may not always be like this case, and there may be a need for more com-
plex modeling for system behavior. Nevertheless we believe that is it worthwhile
to try the technology on more medical equipment. We intend to continue this
work involving more complex properties than the ones presented here.

The most remarkable aspects of this study focus on several positive results:
First, property-based testing proved to be feasible and cost-effective within
this domain in contrast to the normal tendency of using test suites. This is
of great value particularly for those projects with high-pace development, typ-
ically involving continuous modifications in the code in order to improve per-
formance and constant incorporation of new features. QuickCheck’s approach
on lightweight formal specification has great potential to be used in proof-based
certifications for medical devices as recognized by several medical practitioners
involved with the project.

References

1. J. L. Cyrus, J. Daren and P. D. Harry: Formal Specification and Structured Design in Software
Development. Hewlett-Packard Journal, 1991

2. J.W. Brakel: Formal Verification of a Medical Protocol. ISIS Technical Report, University of
Twente, 2005

3. V. Kasurinen and K. Sere: Integrating action systems and Z in a medical system specification.
Industrial Benefit and Advances in Formal Methods, LNCS 1051, (1996) 105–19

4. Food and Drug Administration (FDA). Online: http://www.fda.gov
5. Medical device directive (MDD). Online: http://www.mdss.com/MDD/mddtoc.htm
6. I. Lee, G. Pappas, R. Cleaveland, J. Hatcliff, B. Krogh, P. Lee, H. Rubin and L. Sha: High-

Confidence Medical Device Software and Systems. Computer, 39(4), (2006) 33–38
7. D. Jackson and J. Wing: Lightweight Formal Methods. IEEE Computer, 29(4), (1996) 22–23
8. T. Arts, K. Claessen, J. Hughes, and H. Svensson: Testing implementations of formally verified

algorithms. Proc. 5th Conf. on Soft. Eng. Research and Practice in Sweden, (2005) 20–21
9. M. Kim, S. Kannan, I. Lee and O. Sokolsky: Java-MaC: a Run-time Assurance Tool for Java. Proc.

Runtime Verification, Electronic Notes in Theoretical Computer Science, 55, Elsevier Science,
2001.

10. S. Nelson and C. Pecheur: V&V of advanced systems at NASA, Produced for the Space Launch
Initiative 2nd Generation RLV TA-5 IVHM Project, 2002

11. M. Taghdiri and D. Jackson: A lightweight formal analysis of a multicast key management scheme.
Proc. 23rd IFIP Int. Conf. on FTNDS, (2003) 240–256

12. S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, D. Hamilton: Experiences using
lightweight formal methods for requirements modeling. IEEE Soft. Eng. 24(1), (1998) 4–14

13. Micropos Medical AB. Official web site: http://www.micropos.se
14. K. Claessen and J. Hughes: QuickCheck: a lightweight tool for random testing of Haskell programs.

Proc. 5th ICFP’00, (2000) 268–279
15. P. Jones: Assurance and Certification of Software Artifacts for High-Confidence Medical Devices.

High Confidence Medical Device Software and Systems Workshop, Philadelphia, USA, 2005.
16. J. Bowen and V. Stavridou: Safety-critical systems, formal methods and standards. Soft. Eng.

Journal 8(4), (1993) 189–209

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

14



17. D.R. Wallace, D.R. Kuhn and L.M. Ippolito: An analysis of selected software safety standards.
Proc. 7th Conf. on Computer Assurance, (1992) 123–136

18. R. Jetley and S. P. Iyer: Enabling Certification through an Integrated Comprehension Approach.
In [15].

19. J.P. Bowen and V. Stavridou: Formal methods and software safety. Safety of Computer Control
Systems, Pergamon Press, (1992) 93–98

20. M. Marcos, M. Balser, A. ten Teije and F. van Harmelen: From informal knowledge to formal
logic: a realistic case study in medical protocols. Proc. 13th Int. Conf. EKAW, LNCS 2473,
(2002) 49–64

21. J. Jacky, J. Unger, M. Patrick, D. Reid and R. Risler: Experience with Z developing a control
program for a radiation therapy machine. Proc. of 10th Int. Conf. of Z Users, LNCS 1212, (1996)
317–328

22. J. Rushby. Formal Methods and the Certification of Critical Systems. Computer Science Labora-
tory, SRI International, Menlo Park, CA. Number SRI-CSL-93-7, December 1993.

23. R. Jetley, P. Iyer and P. Jones: A Formal Methods Approach to Medical Device Review. IEEE
Computer, 39(4), (2006) 61–67

24. Food and Drug Administration (FDA). “General Principles of Software Validation: Final Guid-
ance for Industry and FDA Staff”, FDA, 2002.

25. Medical Device Directory (MDD). “Council directive 93/42/EEC of 14 June 1993 concerning
medical devices”, Medical Device Directory, 2003.

26. T. Arts, J. Hughes, J. Johansson, and U. Wiger: Testing telecoms software with Quviq
QuickCheck. Proc. ACM SIGPLAN Workshop, (2006) 2–10

27. Encyclopedia on Software Engineering (edited by J.J. Marciniak), Wiley, 2001. Ibrahim K. El-Far
and James A. Whittaker: “Model-Based Software Testing”

28. H.S. Hong, I. Lee, O. Sokolsky and H. Ural: A temporal logic based coverage theory of test
coverage and generation. Proc. 8th Int. Conf. Tools and Algorithms for the Construction and
Analysis of Systems, LNCS 2280, (2002) 327–339

29. I. Gronau, A. Hartman, A. Kirshin, K. Nagin and S. Olvovsky: A methodology and architecture
for automated software testing. IBM Research Laboratory in Haifa Technical Report, MATAM
Advanced Technology Center, Haifa 31905, Israel

30. J. Dick and A. Faivre: Automating the generation and sequencing of test cases from model-based
specifications. Proc. of Industrial-Strength Formal Methods, LNCS 670, (1993) 268–284

31. P. Ammann and A. J. Offutt: Using formal methods to derive test frames in category-partition
testing Proc. 9th Conf. on Computer Assurance, IEEE Computer Society Press, (1994) 69–80

32. R. A. Kemmerer: Testing formal specifications to detect design errors. IEEE Trans. on Soft. Eng.,
11(1), (1985) 32–43

33. G. Laycock: Formal specification and testing: A case study. The Journal of Software Testing,
specification, and reliability. 2(1), (1992) 7–23

34. P. Stocks and D. Carrington: A framework for specification-based testing. IEEE Trans. on Soft.
Eng., 22(11), (1996) 777–793

35. W. T. Tsai, D. Volovik, and T. F. Keefe: Automated test case generation for programs specified
by relational algebra queries. IEEE Trans. on Soft. Eng., 16(3), (1990) 316–324

36. A. J. Offutt, Yiwei Xiong, Shaoying Liu: Criteria for generating specification-based tests. 5th
IEEE Int. Conf. ICECCS, (1999) 119–129

37. E. Weyuker, T. Goradia, and A. Singh: Automatically generating test data from a boolean spec-
ification. IEEE Trans. on Soft. Eng., 20(5), (1994) 353–363

38. B. Nielsen and A. Skou: Automated Test Generation from Timed Automata. Proc. Tools and
Algorithms for the Construction and Analysis of Systems, (2001)

39. M. Utting, A. Pretschner and B. Legeard: A Taxonomy of model-based testing. University of
Waikato, Department of Computer Science. No. 04/2006.

40. S. Butler, S. Chalasani, S. Jha, O. Raz and M. Shaw: The Potential of Portfolio Analysis in
Guiding Software Decisions. EDSER-1 as part of ICSE’99, (1999)

41. B. Legeard, F. Peureux, and M. Utting: Automated Boundary Testing from Z and B. Proc. Int.
Symposium of Formal Methods. LNCS 2391, (2002) 21–40

42. N. Kosmatov, B. Legeard, F. Peureux, M. Utting: Boundary Coverage Criteria for Test Generation
from Formal Models. ISSRE, (2004) 139–150

A. Fallas Yamashita, A. Bergqvist, T. Arts: Experiences from Testing a Radiotherapy Support System

15



43. F. Belli, M. Eminov and N. Gokce: Prioritizing Coverage-Oriented Testing Process – An Adaptive
Learning Based Approach and Case Study. Proc. 31st Int. Conf. Computer Soft. and Applications.
IEEE Computer Society, 197–203

44. R. Castanet, O. Koné, P. Laurençot: On-the-fly test generation for real-time protocols. Proc. 7th
Int. Conf. in Comp. Comm. and Networks, IEEE Computer, 1998.

45. R. Alur, C. Courcoubetis and D. Dill: Model-checking for real-time systems. Logic in Computer
Science, (1990) 414–425

46. T. Jéron, P. Morel: Test generation derived from model-checking. CAV’99, Italy, LNCS 1633,
(1999) 108–122

47. National Instruments:“NI LabVIEW” Online: http://www.ni.com/labview/whatis/
48. J. L. Armstrong, M. Williams, R. Virding, and C. Wilkström: ERLANG for Concurrent Pro-

gramming. Prentice-Hall, 1993.
49. A. Fallas Yamashita and A. Bergqvist: Testing a radiotherapy support system with QuickCheck.

Masters thesis, IT University of Göteborg, Sweden, 2007.
50. G. Sharp and N. Kandasamy: A Dependable System Architecture for Safety-Critical Respiratory-

Gated Radiation Therapy. Proc. Int. Conf. on Dependable Systems and Networks, 00, DSN, IEEE
Computer Society, June 2006.

51. M. Poonawala, S. Subramanian, W. Tsai, R. Mojdehbakhsh and L. Elliott: Testing Safety-Critical
Systems – A Reuse-Oriented Approach. Proc. 9th Int. Conf. Software Eng. and Knowledge Eng.,
Knowledge Systems Institute, (1997) 271–278

52. W. Singhose, N. Singer and W. Seering: Improving repeatability of coordinate measuring machines
with shaped command signals. Precision Engineering 18, (1996) 138–146

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

16



Model Validation through

CooML Snapshot Generation

Camillo Fiorentini and Mario Ornaghi

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy
{fiorenti, ornaghi}@dsi.unimi.it ?

Abstract. The object of this paper is model validation, namely the study of the “cor-
rectness” of formal specifications (or models) with respect to their requirements. Since
requirements are informal, validation can be only experimental. In the UML, snapshot
generation has been proposed as a tool for validating class diagrams and contracts.
Snapshots are object diagrams representing the possible system states, where one com-
pares the snapshots generated from the UML model with the expected ones. In this
paper we present a DLV implementation of snapshot generation for CooML (Construc-
tive Object Oriented Modeling Language), a modeling language based on a constructive
semantics we are developing. We firstly explain CooML snapshot semantics and we show
by an example how UML class diagrams with OCL constraints can be represented in
CooML. Then we explain our implementation of CooML snapshot generation in DLV
and discuss its potential application for model validation.

1 Introduction

The object of this paper is model validation, namely the study of the “correct-
ness” of formal specifications (or models) with respect to their requirements.
More specifically, we consider OO models, where the system behavior arises
from the interaction of its objects. Furthermore, an OO model should represent
an abstraction of the problem domain, that is, especially in the early design
phases, classes should have an “immediate” counterpart in the problem domain;
the objects populating a system state should represent a “snapshot” of a corre-
sponding counterpart in the modeled world. Here, by snapshot we mean a user
oriented representation of a possible internal system state, at the level of ab-
straction of the OO model considered, starting from the models. In this context,
tools for “snapshot validation” through automatic snapshot generation become
an important part of model validation. For example, USE [12] is a snapshot
generator for the UML, where snapshots are object diagrams. They represent
possible system states at the level of details of the class diagram considered.
Since requirements are informal, validation can be only empirical, i.e., it is per-
formed by comparing the formal model with the user’s expectations. Validation
through snapshot generation should (typically) support the following kinds of
experiments:

? Work partly supported by the MIUR Project “Potenziamento e Applicazioni della Programmazione
Logica Disgiuntiva”.

C. Fiorentini, M. Ornaghi: Model Validation through CooML Snapshot Generation

17



– Check that unexpected populations are not generated.
– Generate all the snapshots that should correspond to specific expected states.
– Generate histories, i.e., sequences of snapshots showing how the system evol-

ves as effected by external events (such as, for example, a withdraw from a
bank account).

In the first part of the paper, we present CooML (Constructive Object Oriented
Modeling Language) [9, 20], a object oriented modeling language we are devel-
oping. The novelty of CooML is its semantics, based on Fcl, an intermediate
constructive logic introduced by Miglioli at al. [18] and similar to Medvedev’s
Logic of finite problems [17]. In this logic the information content of objects
is defined through information terms. Informally, an information term τ for a
formula F , indicated by τ : F , represents an explanation of F according to the
BHK interpretation [22]. We consider the pair τ : F as a piece of information
that can be queried and we formally define its “answer set” as a set of formulas
representing its information content. A special operator T (standing for clas-
sical truth) is used to explicitly indicate the subformulas for which we do not
want a constructive analysis. For example, ∃xA(x) means that a witness for x
is required in the answer set, while T (∃xA(x)) only requires that an x exists,
without asking for a witness. The following features of CooML semantics help
with respect to the above motivations.

– The information term semantics allows us to specify consistent snapshots
in a formal and clear way. Furthermore, UML class diagrams with OCL
constraints can be represented in CooML.

– At the class specification level, the operator T allows us to selectively define
the information required for the objects of a class.

– At the system specification level, it gives a clear-cut distinction between the
information content of objects, given by their information terms, and the
general constraints coming from the problem domain, axiomatized by T -
formulas. The use of T allows us to hide details in the generated snapshots,
as well as considering different levels of abstraction.

In the second part we explain our implementation of CooML snapshot gener-
ation in DLV and discuss its potential applications for model validation. DLV [14]
is a system implementing stable model semantics for disjunctive Datalog pro-
grams (DDP), namely Datalog programs (logic programs without function sym-
bols) allowing disjunction in the head. The expressive power of DLV is strictly
higher than the one of Datalog [6]. In our implementation, we want to exploit
the expressivity of DLV to represent CooML snapshot generation problems by
DDP’s and its capability of generating in an efficient way the stable models of
a DDP to effectively generate CooML snapshots.

Finally, in the conclusion, we briefly mention some related work and we list
some of our future goals.

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

18



2 CooML specifications

In this section, we explain the basic features of CooML. Instead of introducing
the original Java-like syntax, we base our explanation directly on many-sorted
first order classical logic. Signatures Σ, Σ-formulas F , Σ-interpretations i and
the truth relation i |= F are defined as usual. CooML specifications are special
first order formulas, that we call properties. Properties have a constructive se-
mantics based on information terms and I-answer sets. They may contain the
“classical truth” operator T, where by T (P ) we indicate that we are not inter-
ested in a constructive analysis of P , but only in its classical truth. The truth
relation |= is extended to T just by ignoring it: i |= T (F ) iff i |= F . The syn-
tax of CooML properties is introduced in Section 2.1, while information terms,
their I-answer sets and the constructive semantics of CooML are explained in
Section 2.2. In Section 2.3, we introduce generation problems.

2.1 The syntax of CooML properties

Let Σ be a first order signature. In CooML Σ-properties (or “properties” for
short), universal quantifiers are bounded by generators, i.e., by formulas that
are true over a finite domain. For conciseness, we do not specify the syntax of
generators, but it will be clear from the examples. The syntax of Σ-properties
is shown in Table 1; a CooML specification is a set of properties.

Table 1. CooML Σ properties

Simple S ::= true | literal | T (F ) where F is any Σ-formula

Existential E ::= S | E ∧ E | E ∨ E | ∃x E

Property P ::= E | ∀x. G(x) → E where G(x) is a Σ-generator binding x

CashReg
Receipt�total:float Item�price:float
10..11*+item context Receipt

inv sum:

total = Item.price->sum()

Fig. 1. UML class diagram

Example 1. In this example, we show how UML+OCL specifications can be
represented in CooML. Let us consider the UML diagram in Fig. 1. It models a

C. Fiorentini, M. Ornaghi: Model Validation through CooML Snapshot Generation

19



problem domain consisting of cash registers, receipts and items. A cash register
contains 0 or 1 receipts and each receipt is contained in one cash register. A
receipt may have 0 or more items, and each item is contained in one receipt. A
receipt computes a grand total and each item has a price. The OCL constraint
indicates that the grand total of a receipt is the sum of the prices of all its items.
To translate the UML model into CooML, we firstly introduce the following
signature.

class : cashReg(c : obj), receipt(r : obj, c : cashReg), item(i : obj)

assoc : itemOf(i : item, r : receipt)

funct : total(r : receipt) : float, price(i : item) : float

The sorts obj and float are pre-defined and are implicitly imported. The pre-
interpretation of float depends on floating point arithmetic, while obj provides
the names to be used to identify the objects. The declared symbols are internal.
In our example, they are used to represent the UML diagram, as follows:

– We associate with each UML class C a CooML class predicate C( ), where
C(o) means that o is a live object of class C. A CooML class predicate
may depend on parameters, we call “environment parameters”. For example,
the class predicate receipt(r : obj, c : cashReg) depends on c : cashReg,
indicating that the receipt r is associated with cash register c.

– To represent an association, we can use a parametric class predicate, such as
receipt(r : obj, c : cashReg) in our example. We can also introduce associa-
tion predicates, such as itemOf(i : item, r : receipt).

– Finally, attributes are represented by functions. In our example, we use the
functions total(r : receipt) : float and price(i : item) : float.

We represent the UML diagram of Fig. 1 with the following CooML specification
CashSpec:

classax1 : ∀c. cashReg(c) → T (¬∃r. receipt(r, c)) ∨ ∃r. receipt(r, c)

classax2 : ∀r, c. receipt(r, c) → ∃t. t = total(r)

classax3 : ∀i. item(i) → ∃p. p = price(i)

assocax1 : ∀i, r. itemOf(i, r) → true

constr1 : T (∀r1, r2, c. receipt(r1, c) ∧ receipt(r2, c) → r1 = r2)

constr2 : T (∀r, c1, c2. receipt(r, c1) ∧ receipt(r, c2) → c1 = c2)

constr3 : T (∀i∃r. item(i) → itemOf(i, r))

constr4 : T (∀i, r1, r2. itemOf(i, r1) ∧ itemOf(i, r2) → r1 = r2)

constr5 : T (∀r, c. receipt(r, c) → total(r) = sum(p : ∃i.(p = price(i) ∧ itemOf(i, r))))

The above properties represent the structure of the class diagram, its multiplicity
constraints and the OCL constraint. The class axiom classax1 says that a cash
register is empty or has one receipt, classax2 that a receipt contains a witness for
its total, classax3 that an item contains a witness for its price. The association
axiom assocax1 links an item i with its receipt r by means of the itemOf(i, r)
predicate. We remark that the class predicates cashReg(c), receipt(r, c), item(i)
and the association predicate itemOf(i, r) are generators and fix the domain of
live objects and links among them. On the other hand, T-formulas are used

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

20



to represent constraints. For instance, constr1 establishes that a cash has at
most one receipt, while constr5 corresponds to the OCL constraint of Fig. 1.
The external operator sum(L) represents the (pre-defined) sum over lists L of
numbers, where L is the list of the prices p. Formally, s = sum(p : G(p)) is
an abbreviation of T ((∃L.p ∈ L ↔ G(p)) ∧ s = sum(L)). Class predicates
are not types, but they can be used as types in declarations and implicitly
introduce “declaration constraints”. For example, itemOf(i : item, r : receipt)
has declaration constraint T (∀i, r. itemOf(i, r) → item(i) ∧ ∃c. receipt(r, c))
indicating that i must be an item and r a receipt.

2.2 Constructive semantics

We introduce the constructive interpretation of a CooML specification (see
also [9,20] for more details). Each property P specifies a set it(P ) (information
type) of possible information terms, corresponding to the possible explanations
of the truth of P . Formally, the information type it(P ) is recursively defined as
follows:

it(S) = {tt}, where S is a simple Σ-formula

it(P1 ∧ P2) = { [τ1, τ2] | τ1 ∈ it(P1) and τ2 ∈ it(P2) }
it(P1 ∨ P2) = { [k, τ ] | k ∈ {1, 2} and τ ∈ it(Pk) }
it(∃x.P ) = { [t, τ ] | t is a ground Σ-term and τ ∈ it(P ) }
it(∀x.G(x) → P ) = { [ [t1, τ1], . . . , [tn, τn] ] | for all 1 ≤ j ≤ n,

tj is a ground Σ-term and τj ∈ it(P ) }

We write τ : P for τ ∈ it(P ). The meaning of τ : P is given by the I-answer set
ians(τ : P ), recursively defined as follows:

ians(tt : S) = {S}
ians([τ1, τ2] : P1 ∧ P2) = ians(τ1 : P1) ∪ ians(τ2 : P2)

ians([k, τ ] : P1 ∨ P2) = ians(τ : Pk)

ians([t, τ ] : ∃x.P (x)) = ians(τ : P (t))

ians( [ [t1, τ1], . . . , [tn, τn] ] : ∀x.G(x) → P (x) ) =
S

1≤j≤n ians(τj : P (tj)) ∪
{cc(G(t1), . . . , G(tn)) }

where cc(G) is the “only if” part of Clark’s Completion of G.

A snapshot for a specification Spec is a list of information terms, one for
each formula of Spec. Formally:

Definition 1 (Snapshot). Let Spec = {P1, . . . , Pn} be a CooML specification.
A snapshot τ for Spec, written τ : Spec, is a list τ = [τ1, . . . , τn] such that,
for all 1 ≤ j ≤ n, τj : Pj. The I-answer set ians(τ : Spec) is defined as
ians(τ : Spec) =

⋃n
j=1 ians(τj : Pj).

The intuitive meaning of the above definitions is explained next.

C. Fiorentini, M. Ornaghi: Model Validation through CooML Snapshot Generation

21



Example 2. Let CashSpec be the specification of Example 1. A possible snap-
shot τ : CashSpec, corresponding to the object class diagram of Fig. 2, contains
the following information terms (we put a tuple of ground terms between round
brackets):

[ [ c1, [1, tt]], [ c2, [2, [r(c2), tt]]] ] : ∀c. cashReg(c) →
T (¬∃r. receipt(r, c)) ∨ ∃r. receipt(r, c)

[ [ (r(c2), c2), [12, tt]] ] : ∀r, c. receipt(r, c) → ∃t. t = total(r)

[ [ it1, [5, tt]], [ it2, [7, tt]] ] : ∀i. item(i) → ∃p. p = price(i)

[ [ (it1, r(c2)), tt], [ (it2, r(c2)), tt] ] : ∀i, r. itemOf(i, r) → true

tt : constr1 tt : constr2 tt : constr3 tt : constr4 tt : constr5

total = 12

r(c2): Receipt

price = 5

it1: Item

price = 7

it2: Item

c1: CashReg c2: CashReg

Fig. 2. An object class diagram (snapshot)

The first information term has the form [[c1, τ1], [c2, τ2]] : ∀c. cashReg(c) → D
and the corresponding I-answer set is shown in row 1 of Fig. 3. It indicates that
the generator cashReg(c) holds for c = c1, c = c2 and nothing else. Note that
the I-answer set contains the completion axiom T (∀c. cashReg(c) → c = c1∨c =
c2). Let us consider the subterm τ1 : D associated with c1. Since τ1 = [1, tt],
the first disjunct of D holds, hence c1 is empty. Let τ2 = [2, [r(c2), tt]] : D
be the information term for c2. In this case, the information term [r(c2), tt] :
∃r. receipt(r, c2) (the second disjunct of D) holds. It follows that r = r(c2) is a
receipt of c2 and, by constr1, the unique receipt of c2. The second information
term of the snapshot states that the domain of the receipt(r, c) generator only
contains (r(c2), c2) and that the total of r(c2) is 12 (see the corresponding
I-answer set in row 2 of Fig. 3). Finally, the third information term establishes
the items and their prices (row 3 of Fig. 3), whereas the fourth only fixes the
domain of the itemOf(i, r) generator (row 4 of Fig. 3). We remark that the
constraints have tt as unique information term, since we only require that they
are classically true, but we are not interested in a “constructive” explanation of
them.

2.3 Snapshots generation modulo theories

In the previous examples we have shown that formulas of a CooML specification
play different roles. For instance, in Example 1 classax1-3 and assocax1 generate
the relevant part of the snapshot (i.e, the information terms different from tt),

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

22



1) cashReg(c1), cashReg(c2), T (∀c. cashReg(c) → c = c1 ∨ c = c2),
T (¬∃r. receipt(r, c1)), receipt(r(c2), c2),

2) receipt(r(c2), c2), T (∀r, c. receipt(r, c) → (r, c) = (r(c2), c2)), 12 = total(r(c2)),

3) item(it1), item(it2), T (∀i. item(i) → i = it1 ∨ i = it2), 5 = price(it1), 7 = price(it2),

4) itemOf(it1, r(c2)), itemOf(it2, r(c2)),
T (∀i, r. itemOf(i, r) → (i, r) = (it1, r(c2)) ∨ (i, r) = (it2, r(c2)))

5) constr1, constr2, constr3, constr4, constr5.

Fig. 3. The I-answer set ians(τ : CashSpec)

whereas the constraints are needed to cut-off undesired models. Moreover, we
have left understood the formalization of the external float theory. To better
point out the meaning of the sentences in a Σ-specification Spec, we distinguish
internal and external symbols. The meaning of the former is defined by Spec
and can rely on an external theory. To point out this dependency, we indicate
the signature by Σ(Π), where Π is the sub-signature of the external symbols,
and we use the notation Spec = 〈SN ∪ K ∪ P〉, where:

- SN is a finite set of universally bounded quantified sentences, we call the
snapshot axioms.

- K is a (possibly infinite) set of T-sentences representing the constraints.
- P is a (possibly infinite) set of T-sentences over the signature Π (external

axioms), axiomatizing the external symbols.

We remark that a snapshot τ : Spec is completely determined by the infor-
mation terms associated with the sentences in SN , since K ∪ P only contains
T-sentences with information term tt. Thus, we can identify a snapshot for Spec
with an information term τ : SN . The axioms of P characterize a class of Π-
interpretations corresponding to the intended meaning of the external symbols.
The Π-interpretations that satisfy P will be called pre-interpretations, since
they are fixed externally.

Example 3. Let CashSpec′ be the CooML specification obtained obtained by
replacing in CashSpec the axiom classax1 with:

classax1’ : ∀c. cashReg(c) →
(∃p. p = cashier(c)) ∧ (T (¬∃r. receipt(r, c)) ∨ ∃r. receipt(r, c)))

where the function cashier(c : cashReg) : person depends on the external type
person. The external symbols are those for float, having a fixed pre-defined
meaning, and person, which is generic. A possible information term τ ′

1 : classax1’
is

[ [ c1, [ [john, tt], [1, tt]] ] , [ c2, [ [mary, tt], [2, [r(c2), tt]]] ] ]

Let us consider the snapshot τ ′ : CashSpec′ obtained by replacing τ1 with
τ ′
1 in the information term τ : CashSpec of Example 2. Then, we get ians(τ ′ :

CashSpec′) by adding to Fig. 3 the formulas john = cashier(c1) and mary =
cashier(c2). Since person is generic, we consider as possible all the pre-inter-
pretations where person is a finite set containing john and mary.

C. Fiorentini, M. Ornaghi: Model Validation through CooML Snapshot Generation

23



The classical consistency of a specification can be defined as follows:

Definition 2 (Classically consistent snapshots). Let Spec = 〈SN ∪K∪P〉
be a CooML specification with signature Σ(Π). A snapshot τ : SN is (classically)
consistent iff there is a Σ(Π)-interpretation i such that i |= ians(τ : SN )∪K∪P.

Snapshot consistency is related to consistency in classical logic. The relation-
ship with classical logic is shown by the following theorem, where we recall that
a Σ(Π)-interpretation i is reachable iff for every sort s of Σ(Π), every element

of the domain si can be denoted by a ground Σ(Π)-term.

Theorem 1 (Relationship with classical logic). Let i be a reachable Σ(Π)-
interpretation. Then, i |= P iff there is τ : P such that i |= ians(τ : P ).

As we discuss in Section 4, it is useful to allow the user to specify additional
constraints, in order to obtain a finite (and usually small) number of snapshots
exhibiting some specific features of the model. To this aim, in CooML we have
further constraints H, that we call choice axioms.

Definition 3 (Generation Problems). Let Spec = 〈SN ∪K∪P〉 be a specifi-
cation. A generation problem for Spec with choice axioms H is the specification
Spec(H) = 〈SN ∪ (K∪H)∪P〉. A solution of Spec(H) is a consistent snapshot
of it.

We may have different forms of choice axioms. In our DLV implementation:

– A choice axiom for a generator predicate G(x) has the form T (∀x.G(x) →
a G(x)), where a G(x) is a new predicate symbol, called the domain predicate
for G. If the user specifies a G(x) as a finite set D, the domain of G(x) is
constrained to be a subset of D.

– A choice axiom for a simple formula S(x.y), with y occurring in the scope of
an existential quantifier, is of the form T (∀x, y.S(x, y) → elg(y, S(x, y)) (elg
stands for “eligible”). By elg(y, S(x, y)) the user can specify, for every x, a
finite set of values of y, to be considered as the unique possible witnesses for
∃y. S(x, y).

The above choice axioms guarantee that there is a finite set of solutions.
Furthermore, we may be interested in the minimal solutions, where a solution
τ : Spec(H) is minimal iff there is no solution τ ′ : Spec(H) such that ians(τ ′ :
Spec(H)) ⊂ ians(τ : Spec(H)).

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

24



Example 4. The snapshot in Example 2 is a minimal solution of the generation
problem for the specification CashSpec of Example 1 with the following choice
axioms (c1),. . . , (c5), domain axioms (d1),. . . ,(d3) and elg-axioms (d4),(d5):

c1 T (∀c. cashReg(c) → a cashReg(c))

c2 T (∀r, c. receipt(r, c) → a receipt(r, c))

c3 T (∀i. item(i) → a item(i))

c4 T (∀p, i. p = price(i) → elg(p, p = price(i)))

c5 T (∀t, r. t = total(r) → elg(t, t = total(r)))

d1 T (∀c. a cashReg(c) ↔ c ∈ [c1, c2])

d2 T (∀r, c. a receipt(r, c) ↔ a cashReg(c) ∧ r = r(c))

d3 T (∀i. a item(i) ↔ i ∈ [it1, it2])

d4 T (∀p, i. elg(p, p = price(i)) ↔ item(i) ∧ p ∈ [5, 7, 20])

d5 T (∀t, r, c. elg(t, t = total(r)) ↔ receipt(r, c) ∧ t ∈ [12])

By replacing (d1),. . . , (d5), we change the possible choices of possible popu-
lations. For example, to obtain snapshots with different combinations of prices
and totals we have only to modify (d4) and (d5).

3 Solving generation problems with DLV

In this section we briefly describe our DLV implementation of CooML snapshot
generation. The overall process is illustrated in Fig. 4 The DLV translation of

Fig. 4. DLV Implementation of Snapshot Generation

a snapshot generation problem is accomplished in two steps In1 and In2. The
detailed exposition is rather cumbersome and here we give only an idea.

C. Fiorentini, M. Ornaghi: Model Validation through CooML Snapshot Generation

25



In step In1, the CooML specification Spec is translated into a DLV program
P1, by the following transformations.

- Application of the Morgan rules, introduction of new atoms as abbreviations
of simple formulas, elimination of the existentials by introducing suitable
elg-atoms, in order to translate CooML class properties into DLV clauses.

- Translation of the CooML constraints into DLV constraints.

Example 5. Let us consider the specification CashSpec′ of Example 3. Some
clauses of the corresponding translation are shown below. The cax1 clauses
translate classax1’ and the c1 constraint corresponds to constr1.

%cax1.

cEmpty(C,P) v cReceipt(C,P,R) :-

cashReg(C), elg_cashier(C,P), a_receipt(R,C).

empty(C) :-

cEmpty(C,P).

cashier(C,P) :-

cReceipt(C,P,R).

....

%c1

:- receipt(R1,C), receipt(R2,C), R1 != R2.

....

In general, the program P1 has infinitely many models, but a unique empty
stable model (or no stable model at all). To generate non-empty snapshots,
we have to impose that the population of live objects is not empty and that
elg-atoms are satisfied by the suitable witness values. This is obtained by the
translation In2 of the choice and domain axioms and elg-axioms, giving rise to
the DLV program P2.

Example 6. Let us consider the choice and domain axioms in Example 4. They
are implemented in DLV by suitable guess axioms (as defined in [14]). For in-
stance, the following domain axioms for item guess 4 domains of item ([],
[it1], [it2], [it1,it2]), while the elg-axioms select one of the prices 5
and 7.

%% domain axioms

a_item(it1).

a_item(it2).

item(I) v -item(I) :- a_item(I).

....

%%%% elg-axioms

elg_price(I,5) v elg_price(I,7):- item(I).

..........

One can prove that:

Theorem 2. Let Spec be a CooML specification and P2 be the DLV program
obtained by translating Spec. Then:

– For every snapshot τ : Spec there is a stable model M of P2 such that
ians(τ : Spec) ⊆ M , and

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

26



– for every model M of P2 there is a snapshot τ : Spec such that

ians(τ : Spec) ⊆ M .

As a consequence, from stable models of program P2 one can reconstruct the
solution of the snapshot generation problem given as input. The last transfor-
mation is performed by the Out translation.

4 Snapshot generation for model validation

In this section we discuss snapshot generation for model validation and the use of
answer set programming [3]in this context. The discussion use the previous cash
register example and, in addition, the example of a circular queue, as defined by
the following Java classes.

class Queue{

Element first = null;

Element last = null;

public void insert(Elem e){

last.next = e;

e.next = first;

first = e;}

}

class Elem{

Content content;

Element next;

}

The insert method contains a mistake, since it does not consider the null case.
The above Java classes have the following CooML representation where the class
axioms correspond to the Java classes and the constraints impose the struc-
ture of circular queues. We omit the signature declaration for conciseness; we
only remark that the function symbols first(q), last(q) and next(e, q) have type
elem(q). Furthermore, we do not model the attribute content.

∀q. queue(q) → T (¬∃e. elem(e, q)) ∨ ∃f, l. f = first(q) ∧ l = last(q) ∧ f = next(l, q)

∀e, q. elem(e, q) → ∃c, e′. c = content(e, q) ∧ e′ = next(e, q)

T (∀e, q. elem(e, q) → ∃!e′.e = next(e′, q))

Starting from the above examples, we illustrate how we can carry out the
validation experiments considered in the introduction. An experiment tests the
formal model with respect to the informal requirements expressing the user’s
expectation. Each experiment is obtained by choosing the domain predicates in
a suitable way.

a) Check that the expected populations are generated. In this case, we choose the
set H of domain and elg predicates in such a way that, according to the informal
requirements, there is a finite and small number of snapshots. Eventually, we
know their information content. Then we generate all the snapshots that satisfy
H and we compare them with the expected ones. If the expected snapshots
are generated exactly, the experiment is successful. Otherwise we may get no
snapshot (a kind of inconsistency result), fewer snapshots, indicating that our
constraints are too strong, or unexpected snapshots, indicating that our model
is wrong.

C. Fiorentini, M. Ornaghi: Model Validation through CooML Snapshot Generation

27



Example 7. Let P be the DLV program obtained by translating the CashSpec′

specification of Ex. 3 with the choice axioms H of Ex. 6. Examples of stable
models of P are:

1) cashReg(c1), cashier(c1,john), empty(c1).

2) cashReg(c1), cashier(c1,john), receipt(r_c1,c1), total(r_c1, 12),

itemOf(it1,r_c1), itemOf(it2,r_c1), price(it1,7), price(it2,5).

....

They correspond to realistic snapshots for the CashSpec′ specification with
choice axioms H. Now, let CashSpec′

1 be the specification obtained by deleting
constr5 (corresponding to the OCL constraint in Fig. 1) from CashSpec′ and let
P1 be the DLV program obtained by translating CashSpec′

1 with choice axioms
H. Then, among the stable models of P1 computed by DLV we find:

cashReg(c1), cashier(c1,john), receipt(r c1,c1), total(r c1, 12),

itemOf(it1,r c1), price(it1,5).

Clearly, this does not correspond to a feasible snapshot, since the receipt r c1

has only an item it1 with price 5, whereas the total of r c1 is 12. By inspecting
the solution, one realizes that CashSpec′

1 is too loose and the constraint constr5
must be added. A similar discussion applies if any of the other constraints is
dropped or if we have constraints cutting expected solutions.

b) Check that unexpected snapshots are not generated. The domain and gen-
predicates are chosen as in a). Furthermore, we add as new constraint a property
that, according to the informal requirements, should be excluded. If no snapshot
is generated, then the experiment succeeds, otherwise it fails. Failure exhibits
counterexamples, which are admitted by the formal model but should be ex-
cluded. This approach can be considered as a kind of “partial model checking”.
Indeed, the fact that no snapshot is generated entails inconsistency with respect
to Specch, which does not necessarily entail the inconsistency of Spec.

Example 8. Each element of a queue should be reachable starting from the first
one. To check that there are no unreachable elements, we assume by absurd that
there exists one. Our experiment considers the queues with at most 2 elements,
and we impose that they are not linked. The domain and elg axioms are

T (∀x. a queue(x) ↔ member(x, [q]))

T (∀e, q. a elem(e, q), ↔ a queue(q) ∧ member(e, [e1, e2]))

T (∀n, e, q. elg(n, n = next(e, q)) ↔ a elem(e, q) ∧ a elem(n, q))

T (¬e1 = next(e2) ∧ ¬e2 = next(e1))

We get a snapshot where e1=next(e1,q) is the first and last element of q,
while the element e2=next(e2,q) is isolated. Thus, we discover that we have to
impose reachability as a new constraint.

c) Checking Methods Specifications and generating Test Cases. In OO models,
specifications are typically modeled through contracts, in the pre-post condition
style: the precondition Pre must be satisfied at call time, while the post condition
relates the call-time and exit-time states. Thus we have to generate pair of
snapshots 〈τ : Spec, τ ′ : Spec〉 such that

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

28



– τ : Spec, representing the call state, is consistent in Spec(Prec), i.e., Spec
with additional constraints Prec, and

– τ ′ : Spec, representing the exit state, is consistent in Spec and the post
condition is satisfied by 〈τ : Spec, τ ′ : Spec〉.

To represent constraints on pairs 〈τ : Spec, τ ′ : Spec〉, we introduce an extra-
argument of type time for predicates that may be updated by methods, where
time = {pre, now} (intuitively, pre is the call time of the specified method, while
now is the exit time). At the CooML specification level, we formalize states by
the meta-predicate holds(t, S), indicating that the simple formula S holds at
state (or “time”) t. Using holds, the fact that non-assigned atoms are preserved
(also known as inertia principle [7]) is enforced by the axiom schema:

holds(now, A) :- holds(pre, A), ¬assignable(A).

Methods are represented with assignable simple formulas and by specifying their
effect as shown in the following example. Contracts are represented in a similar
way.

Example 9. Here consider the insert method of the class Queue. The predicate
insert(Q,E) means that the call insert(E) has been performed by Q. For
conciseness, we give only some EDF axioms. The CooML axiom a corresponds to
the fact that last.next is assigned, while h corresponds to the first assignment
of the insert method.

a. assignable(next(Last, E, Q)) :- queue(Q), holds(pre, last(Last, Q)).

h. holds(now, next(Last, E, Q)) :- holds(pre, last(Last, Q)), insert(Q, E).

The DLV translation contains, for example, the clauses:

i1. next(now, E1, E2, Q) :- next(pre, E1, E2, Q), not last(pre, E1, Q).

i2. elem(now, E, Q) :- elem(pre, E, Q).

...

h. next(now, Last, E, Q) :- last(pre, Last, Q), insert(Q, E).

...

where i1, i2 are examples of the inertia principle, while h comes from h. Now we
rewrite the DLV translation of the queue specification considered in Example 8,
just by adding the extra-argument pre. The result of snapshot generation on
the DLV program corresponding to the above method specification and on the
CooML queue specification contains the empty queue both at time pre and at
time now; this shows that the case of the empty queue was not considered.

d) Generating Test Cases. Here, we give only some hints, since this part has
not been studied yet. Once we have validated the specification of a method m,
we can use a similar approach to generate test cases and test oracles for an
implementation of m, say in Java. We need a representation method, to build
Java states from snapshots. Essentially, this method accepts information terms
as input parameters and creates the corresponding Java objects. The test cases
are obtained by calling the representation method with the snapshots for the

C. Fiorentini, M. Ornaghi: Model Validation through CooML Snapshot Generation

29



generated pre-states. The oracle is implemented by comparing the Java states
obtained after the execution of m with the now-states obtained from the method
specification. We believe also that our snapshot generation algorithm could be
employed in Bounded Exhaustive Testing [16]. We plan to experiment our system
with meaningful examples and to compare it with the existing tools, such as
Alloy (http://alloy.mit.edu/) and TestEra [16].

5 Related work and conclusion

We have used the modeling language CooML and we have shown how OO mod-
els, their snapshots and the related information content can be specified. Then
we have presented a DLV implementation of CooML Snapshot Generation (SG)
and we have discussed its potential application in model validation.

The relevance of SG for validation and testing in OO software development is
widely known. The USE tool [12] for validation of UML+OCL models has been
recently extended with a SG mechanism; differently from us, this is achieved via
a procedural language. Other animation tools include [5] w.r.t. JML specifica-
tion. In [4] the specification of features models are translated into SAT problems;
tentative solutions are then propagated with a Truth Maintenance System. Re-
lated work is also [19], where design space specs are seen as trees whose nodes
are constrained by OCL statements and BDD’s used to find solutions, and [15],
proposing Armstrong data bases [2] as a way of extracting small examples from
existing data bases, to show their functional and inclusion dependencies.

As far as testing is concerned, [1] studies Z and B specifications. In [8] the
authors propose a testing method extracting test case and oracles from formal
correctness proofs. One of the advantages is that one can test both code and
specifications and that a complete specification is not needed. Our approach
has some similarities, since we can deal with incomplete specifications and we
can use the T operator to hide details. Further, we can test code by testing the
effect of method calls against contracts, but we cannot test the internal parts of
a method unless in simple cases, such the one considered in Example 9.

Our implementation is still at an initial stage, and we have considered only
a limited set of small examples. Nevertheless, we believe that SG is a promising
approach, the more once the following points are addressed.

– We have to complete the DLV implementation. So far, we have implemented
the translation from CooML into DLV, yet constraints are to be translated
in the DLV format manually. We have to implement the map reconstructing
snapshots from DLV models.

– We will study the possibility of integrating our DLV snapshot generator and
the DLV front-end for planning [7]. The idea is to apply AI planning, in a
way similar to the one proposed in [13].

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

30



– We will develop tools supporting the interoperability with UML + OCL
and OO languages. This will allow us to apply our approach with known
meaningful examples and compare it to other architectures.

– From a more theoretical point of view, it is interesting to compare the CooML
snapshot semantics with the stable model semantics [10]. We argue that,
under suitable minimality requirements, they are related and information
terms could be proposed as a tool for the justification and debugging of
answer set programs [21]. Some preliminary results are presented in [11].

References

1. F. Ambert and et al. BZ-TT: A Tool-Set for Test Generation from Z and B using Constraint
Logic Programming. In H. Hierons and T. Jerron, editors, FATES 2002, pages 105–120, 2002.

2. W. Armstrong and C. Delobel. Decompositions and functional dependencies in relations. ACM
Transactions on Database Systems, 5(4):404–430, 1980.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. CUP, 2003.
4. D. S. Batory. Feature models, grammars, and propositional formulas. In J. H. Obbink and

K. Pohl, editors, SPLC, volume 3714 of LNCS, pages 7–20. Springer, 2005.
5. F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. JML-testing-tools: A symbolic animator for

JML specifications using CLP. In N. Halbwachs and L. D. Zuck, editors, TACAS, volume 3440
of LNCS, pages 551–556. Springer, 2005.

6. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic
programming. In CCC ’97: Proceedings of the 12th Annual IEEE Conference on Computational
Complexity, page 82, Washington, DC, USA, 1997. IEEE Computer Society.

7. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under incomplete knowledge.
In Computational logic—CL 2000 (London), volume 1861 of Lecture Notes in Comput. Sci., pages
807–821. Springer, Berlin, 2000.

8. C. Engel and R. Hähnle. Generating unit tests from formal proofs. In TAP, pages 169–188, 2007.
9. M. Ferrari, C. Fiorentini, A. Momigliano, and M. Ornaghi. Snapshot generation in a constructive

object-oriented modeling language. In LOPSTR’07 Proceedings, pages 145–159, 2007.
10. P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In IJCAI, pages

372–379, 2007.
11. C. Fiorentini and M. Ornagh. Answer Set Semantics vs. Information Term Semantics. In

S. Costantini and R. Watson, editors, Proceedings of the 4th Workshop on Answer Set Pro-
gramming: Advances in Theory and Implementation, pages 241–253, 2007.

12. M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL models in USE by automatic
snapshot generation. Software and System Modeling, 4(4):386–398, 2005.

13. A. E. Howe, A. von Mayrhauser, and R. T. Mraz. Test case generation as an AI planning problem.
Autom. Softw. Eng., 4(1):77–106, 1997.

14. N. Leone and et al. The DLV system for knowledge representation and reasoning. ACM Trans.
Comput. Log., 7(3):499–562, 2006.

15. F. D. Marchi and J.-M. Petit. Semantic sampling of existing databases through informative
Armstrong databases. Information Systems, 32:446–457, 2007.

16. D. Marinov and S. Khurshid. Testera: A novel framework for automated testing of java programs.
In ASE, pages 22–34, 2001.

17. J. Medvedev. Finite problems. Soviet Mathematics Doklady, 3:227–230, 1962.
18. P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on classical truth.

Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.
19. S. Neema and et al. Constraint-based design-space exploration and model synthesis. In R. Alur

and et al, editors, EMSOFT, volume 2855 of LNCS, pages 290–305. Springer, 2003.
20. M. Ornaghi, M. Benini, M. Ferrari, C. Fiorentini, and A. Momigliano. A constructive object

oriented modeling language for information systems. ENTCS, 153(1):67–90, 2006.

C. Fiorentini, M. Ornaghi: Model Validation through CooML Snapshot Generation

31



21. E. Pontelli and T. C. Son. Justifications for logic programs under answer set semantics. In
S. Etalle and M. Truszczynski, editors, ICLP, volume 4079 of LNCS, pages 196–210. Springer,
2006.

22. A. Troelstra. Aspects of constructive mathematics. In J. Barwise, editor, Handbook of Mathe-
matical Logic. North-Holland, 1977.

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

32



Verification-based Test Case Generation with

Loop Invariants and Method Specifications

Christoph Gladisch?

University of Koblenz-Landau
Department of Computer Science

Germany

Abstract. The goal of this work is to improve the testing of programs that contain
loops and complex methods. We achieve this goal with verification-based testing, which
is a technique that can generate test cases not only from source code but also from
loop invariants and method specifications provided by the user. These test cases ensure
the execution of interesting program paths that are likely to be missed by existing
testing techniques that are based on symbolic program execution. These techniques
would require an exhaustive inspection of all execution paths, which is hard to achieve
in presence of complex methods and impossible if loops are involved. Verification-based
testing takes a different approach.

1 Introduction

The goal of the presented approach is to improve existing software testing tech-
niques that use symbolic program execution for test case generation and con-
straint solving for computing concrete test data. The improvement is the gener-
ation of test cases that are likely to be missed by the existing testing techniques.
These would require an exhaustive inspection of all execution paths which is
infeasible in the presence of complex methods and impossible in the presence of
loops because loops represent infinitely many paths.

An example is given in listing 1.1 of Figure 1. In order to execute A() the
loop body has to be executed at least 10 times and in order to execute C() it
has to be executed exactly 20 times. In similar programs these numbers could
be much larger or be the result of complex expressions requiring an exhaustive
inspection of all paths in order to find the case where the branch conditions are
satisfied. The situation is similar in listing 1.2 where an exhaustive inspection
of D() may be required in order to find a path such that after the execution
of D() the branch condition i

.
= 20 holds. Since exhaustive symbolic execution

is not possible existing testing techniques are likely to miss these cases because
they have a bound on the amount of inspected execution paths. For loops and
recursive methods the typical approach is to symbolically execute the first k loop
iterations or recursion steps, called k-bounded unwinding, where k is a limiting
constant.

? gladisch@uni-koblenz.de

C. Gladisch: Verification-based Test Case Generation with Loop Invariants and Method Specifications

33



JAVA (1.1)

void foo(int n){

int i=0;

while(i < n){

if(i==10){ A();}

B(); i++;

}

if(i==20){ C(); }

}

JAVA

JAVA + JML (1.2)

/*@ requires i<n;

@ assignable i;

@ ensures i==n; */

void D(int n){while(i<n)...}

void foo(int n){

D(n);

if(i==20){ C(); }

}

JAVA + JML

Fig. 1. Motivating examples

1.1 Verification-based Testing

Our solution, which is an extension of verification-based testing [9], takes a dif-
ferent approach. It incorporates verification technology into test case generation
by replacing the symbolic execution of a complex method or loop by the ap-
plication of a method specification or loop invariant rule. The purpose of both
approaches is the same, namely to compute a precondition for a given branch
condition (the condition that has to be fulfilled later on for that branch to be
taken): the branch precondition.

The challenge in test case generation for programs with loops and complex
methods like in Figure 1 is to compute the precondition of the loop or the
method for a given branch condition which occurs within the loop (e.g. i==10)
or after the loop or method (e.g. i==20). The precondition is important because
it describes test data for establishing a program state before the loop or method
that guarantees the execution of program branch or path. If the precondition is
known and represented as a first-order logic formula, then the desired test data
can be computed using a constraint solver.

For example the desired preconditions of the loop in listing 1.1 that are
computed with our approach by using the loop invariant iold 6 i ∧ i 6 n are:
i 6 10 ∧ 10 < n to execute A() and i 6 n ∧ 20 = n to execute C() , where
iold refers to the value of i before the loop. The loop is replaced in listing 1.2
with the method D() which has the specification: if i < n is satisfied before the
execution of D(), then i

.
= n is satisfied after its execution. Instead of searching

for a program path in D() with a path-condition that ensures the execution of
C() we use the given specification of D(). Our approach yields in this case the
desired constraint i 6 n ∧ 20 = n. These preconditions are not generated by
symbolic execution if we choose for instance the bound k = 3.

Precondition computation based on specifications or loop invariants is ap-
plicable in situations where the inspection of all execution paths with symbolic
execution is infeasible or impossible. Computing the precondition for a given
branch condition based on a loop invariant resp. a method specification are

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

34



however essentially the same problem. The loop invariant is a pre- and postcon-
dition of the loop’s body and of the loop itself. We will therefore refer to the loop
invariant or method specification just by specification. The presented technique
is similar to the well known verification technique called weakest precondition
computation except that for the purpose of test data generation the constraint
solver does not require weak but rather strong constraints.

Typical use-cases of our approach are those where specifications of methods
and loops are provided. This is for instance the case in specification driven
software development methodologies (e.g. the B method [6] , SOCOS [2]) or in
test cases generation based on verification proofs, e.g. [9].

1.2 Plan of the Paper

In the next section we describe the logic and the calculus on which we build our
approach and give some definitions. The approach can however easily be adapted
to other formalisms. The main part is Section 3 where we introduce two formulae
that are built from a specification and a branch condition: the disjunctive branch
precondition (DBPC) and the conjunctive branch precondition (CBPC). The
CBPC is the desired precondition (constraint) for test data generation using
constraint solving as described in Section 1.1. The DBPC is needed to show how
the CBPC can be used depending on the properties of the involved specification.
In Section 4 we give examples of how to generate the desired preconditions of
methods and loops for a given branch condition by constructing the CBPC.
Finally in Section 5 we describe how this contribution relates to existing work
and we draw conclusions in Section 6.

2 Dynamic Logic and the Verification Calculus

2.1 Overview of JAVA CARD DL and KeY’s Sequent Calculus

The work presented here is based a Dynamic Logic [10] for JAVA CARD(JAVA

CARD DL [3]) but it can be adapted to similar logics like Hoare Logic and for
different programming languages. JAVA CARD DL is the program logic of the
KeY-System [5, 1], which is a combined interactive and automatic verification
and test generation system with symbolic execution rules for a subset of JAVA.

Dynamic Logic is an extension of first-order logic where a formula ϕ can be
prepended by the modal operators 〈p〉 and [p] for every program p. The formula
[p]ϕ means that if p terminates, then ϕ holds in the state after the execution of
p. The formula 〈p〉ϕ means that after all possible executions of p the formula ϕ
is true but since we consider only sequential and deterministic JAVA programs
the meaning of 〈p〉ϕ is that the program terminates and that [p]ϕ is true. Thus
[p]ϕ∧〈p〉true is equivalent to 〈p〉ϕ. In the following we denote the set of programs

C. Gladisch: Verification-based Test Case Generation with Loop Invariants and Method Specifications

35



by π, the set of DL-formulae by Fml , and the set of first-order logic formulae
by FmlFOL. All variables in formulae are bound with quantifiers.

An implication of the form pre → [p]post ∈ Fml with pre, post ∈ FmlFOL

corresponds to the Hoare triple {pre}p{post} in Hoare logic. If the precondition
pre is true in the state before the execution of the program and the program
terminates, then the postcondition post holds after the execution of the program;
if the precondition does not hold before the execution of the program, then no
statement is made about the post-state. The implication pre → 〈p〉post states
additionally that p terminates. Dynamic logic allows pre and post to contain
programs in contrast to Hoare logic: if pre, post ∈ Fml then pre → [p]post ∈
Fml .

Program variables are modelled in JAVA CARD DL as non-rigid function sym-
bols f ∈ Σnr ⊂ Σ of the signature Σ. Different program states are therefore
realized as different first-order interpretations of the non-rigid function symbols.
For instance let a, o, i, acc[] ∈ Σnr. In this case a program variable a is repre-
sented by a logical non-rigid constant a, an expression like o.a, that accesses
an object attribute, is modeled as the term a(o), and in case of an array ac-
cess o.a[i] the corresponding term is acc[](a(o), i). We use constant domain
semantics which means that in all states terms are evaluated to values of the
same universe. In contrast to interpretations a variable assignment β cannot be
modified by a program so that logical variables are always rigid , i.e., they have
the same value in all program states.

To express that a formula ϕ is true in a state s ∈ S (S is the set of all states)
under a variables assignment β we write s, β � ϕ. Furthermore s � ϕ means
that for all variable assignments β: s, β � ϕ; and � ϕ means that ϕ is valid, i.e.,
for all s ∈ S and all variable assignments β the statement s, β � ϕ holds. Non-
standard, but important in this paper, is the case where sΣ\A is only a partial
interpretation sΣ\A ∈ SΣ\A, i.e., it gives a meaning to symbols from some subset
(Σ\A) ⊂ Σ of the signature Σ. In this case each partial interpretation sA ∈ SA of
the unspecified symbols A ⊂ Σ is combined with the given partial interpretation
sΣ\A ∈ SΣ\A resulting in a total interpretation (sA∪sΣ\A) ∈ (SA∪×SΣ\A) = SΣ.
Thus sΣ\A, β � ϕ means that for all sA ∈ SA the statement (sA ∪ sΣ\A), β � ϕ
holds.

In this paper we understand test data as a partial state, i.e. a mapping from
program variables Σnr to values.

Definition 1. Let Φ = φ1, . . . , φn be a set of formulae and let Φ∧ be the con-
junction φ1∧. . .∧φn. Let γ be a formula, S the set of all states (interpretations),
and B the set of all variables assignments, then

− γ is a local consequence of Φ, written as Φ �l γ, iff

for all β ∈ B: for all s ∈ S:
s, β � Φ∧ implies s, β � γ

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

36



− Let SK ⊂ Σ and let SΣ\SK be the set of all partial states that are defined only
for the symbols Σ\SK. γ is a semi-local consequence of Φ, or alternatively,
γ is a local consequence of Φ modulo the interpretation of SK ⊂ Σ, written
as Φ �SK γ, iff

for all β ∈ B: for all s ∈ SΣ\SK:
s, β � Φ∧ implies s, β � γ

(note that s, β � Φ∧ and s, b � γ quantify locally over the interpretations of
the symbols SK).

For example a
.
= sk ∧ sk

.
= b �l a

.
= b but a

.
= sk → sk

.
= b �{sk} a

.
= b. A

state s ∈ S where local consequence fails in the latter case is, e.g., s = {a 7→
0, sk 7→ 1, b 7→ 1}.

For the sake of a shorter notation we use the sequent calculus notation. A
formula of the form

((γ1) ∧ . . . ∧ (γk)) → ((δ1) ∨ . . . ∨ (δl))

with γ1, . . . , γk, δ1, . . . , δl ∈ Fml is equivalent to the sequent

γ1, . . . , γk =⇒ δ1, . . . , δl

A sequent rule is of the form

Γ1 =⇒ ∆1 . . . Γn =⇒ ∆n

Γ0 =⇒ ∆0

and it is locally correct iff Γ1 =⇒ ∆1 . . . Γn =⇒ ∆n �l Γ0 =⇒ ∆0 and locally
correct modulo SK ⊂ Σ (or semi-locally correct) iff Γ1 =⇒ ∆1 . . . Γn =⇒
∆n �SK Γ0 =⇒ ∆0. In sequent calculus, proofs are constructed by applying se-
quent rules bottom-up, i.e., in order to prove Γ0 =⇒ ∆0 the new proof obligations
Γ1 =⇒ ∆1 . . . Γn =⇒ ∆n are generated that have to be proved instead.

2.2 State Updates

In order to write that f ∈ Σ is replaced by g ∈ Σ in ϕ ∈ Fml we could use the
substitution [g/f ]ϕ. This is a rather technical notion of our intention to express
that ϕ is evaluated in the state after assigning f(x1, . . . , xn) to g(x1, . . . , xn) for
all argument values. A more intuitive notation allowing us to refer to a pre-state
and a post-state of an assignment is {f := g}ϕ which abbreviates a quantified
update [12]. Updates allow also an extension of our approach, e.g. semantic
selection of memory locations, that is, however, not discussed here due to space
limitation. JAVA CARD DL extends classical Dynamic Logic [10] with updates [3].
These are assignments between terms (not between JAVA expressions) and are

C. Gladisch: Verification-based Test Case Generation with Loop Invariants and Method Specifications

37



therefore free of side-effects allowing an efficient way of handling aliasing. An
update has the form {t1 := t2} and means that in the post-state of the update
the term t1 has the value of the term t2 which is evaluated in the pre-state.

For instance in order to prove i
.
= 0 → 〈i++;〉i .

= 1 the diamond operator
〈i++;〉 is replaced with an update yielding i

.
= 0 → {i := i + 1}i .

= 1. Update
application finally gives i

.
= 0 → i + 1

.
= 1.

Furthermore the notation {A := B}ϕ with A, B ⊂ Σ is equivalent to the
substitution [b1/a1, . . . , bn/an]ϕ where the function symbols a1, . . . , an ∈ A are
replaced by the function symbols b1, . . . , bn ∈ B respectively.

2.3 Modifier Sets and Anonymous Updates

A modifier set for a program is a set of function symbols that model program
variables. The purpose of using a modifier set as part of a specification is to
specify which program variables are modified by the program.

Definition 2. The minimal modifier set of a program p is denoted by Mod(p) ⊂
Σ and it consists exactly of those function symbols that can be modified by p.

A correct modifier set M ⊂ Σnr contains at least the function symbols that
are modifiable by p, i.e. M ⊇ Mod(p).

A modifier set M ⊂ Σnr can be used to create an anonymous update of
the form {M := Msk} which replaces each function symbol f ∈ M by a fresh
function symbol fsk ∈ Msk. Anonymous updates enable us to transform a post-
condition into a precondition preserving only the common information of the pre-
state and the post-state. For instance the formula 〈o.a=x;〉(o.a .

= c ∧ o.a
.
= d)

specifies a pre-state such that after the execution of o.a=x the postcondition
o.a

.
= c ∧ o.a

.
= d holds. The anonymous update {a := ask} replaces the modal

operator 〈o.a=x;〉 resulting in the formula {a := ask}(o.a = c ∧ o.a
.
= d) which

can be reduced to o.ask = c ∧ o.ask
.
= d. Thus we have gained the additional

information about the pre-state that c
.
= d.

2.4 Specifications

Definition 3. A specification is a triple (pre, post, M) where pre ∈ FmlFOL is
the precondition, post ∈ FmlFOL is the postcondition and M ∈ Σ is a modifier
set.

A specification typically describes the behavior of a method but it can specify
the behavior of any statement or sequence of statements. For instance a loop
invariant I ∈ Fml is the pre- and postcondition of a loop’s body and the loop
itself. A stronger postcondition of the loop is I ∧¬lc where lc ∈ Fml is the loop
condition, i.e. the loop iterates while lc is true. The specification of a loop is

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

38



therefore the triple (I, I ∧ ¬lc, M) and the specification of a loop body before
loop termination is the triple (I, I ∧ lc, M).

In the next section we describe how to compute preconditions from a given
specification and a branch condition in the program. The preconditions have dif-
ferent semantic properties depending on the semantic properties of the involved
specifications that are described next.

Satisfied Specification An important verification technique is to use a specifi-
cation in a proof instead of a program which is allowed if the program is correct
wrt. the specification. A program p is correct wrt. a specification (pre, post, M)
iff M ⊇ Mod(p) and pre → 〈p〉post is valid. That a program p is correct wrt. a
specification is equivalent to the statement, the specification is satisfied by p.

Strong Specification In the following sections we will abbreviate the formula

∀x1 . . . ∀xm1 .f1(x1, . . . , xm1)
.
= f sk

1 (x1, . . . , xm1)

∧ . . . ∧ ∀x1 . . . ∀xmn .fn(x1, . . . , xmn)
.
= f sk

n (x1, . . . , xmn)

where {f1, . . . , fn} = M ⊂ Σ and {f sk
1 , . . . , f sk

n } = Msk ⊂ Σ are disjunct, with
the notation

M
.
=∀ Msk

The definition below defines a property of a specification that is important when
we construct a precondition based on the specification.

Definition 4. Let p be a program and σ = (pre, post, M) a specification with
M ⊇ (Mod(p)∩Σ(pre, post)), where Σ(pre, post) denotes the set of symbols that
are in pre or in post. We say that

− σ is strong wrt. p iff the following formula is valid

(pre ∧ {M := Msk}post)→ 〈p〉M .
=∀ Msk (1)

− σ is strong wrt. p in state s iff s � (1).

For example the specification (y
.
= y′, y

.
= y′ + 1, {y}) is strong for the

program y=y+1 but the specification (y
.
= y′, y′ > 0 → y

.
= y′ + 1, {y}) is weak,

e.g., it is not strong in the state s = {y 7→ 0, y′ 7→ 0, ysk 7→ 7}, where ysk is the
new symbol introduced by the anonymous update {M := Msk}. If a specification
is strong and pre = true, then it is the strongest specification.

C. Gladisch: Verification-based Test Case Generation with Loop Invariants and Method Specifications

39



3 Branch Preconditions

The goal of the presented approach is to improve existing software testing tech-
niques which use symbolic program execution and constraint solving. As de-
scribed in the first section the purpose of the symbolic execution is to compute
preconditions for a given branch condition from which test data can be computed
by using constraint solving.

Our approach is to replace the symbolic execution of a complex method
or loop by the computation of a precondition based on a specification and a
branch condition (see Section 1.1). We define two kinds of such preconditions: the
disjunctive branch precondition (DBPC) and the conjunctive branch precondition
(CBPC). The DBPC is what many weakest precondition calculi compute in
practice but it is not necessarily the weakest precondition for a given branch
condition. The CBPC is stronger than the DBPC. Depending on the properties
of the involved specification the DBPC is suitable to detect infeasible paths
or unsatisfiable test data constraints and the CBPC is suitable for test data
generation. The CBPC is therefore more important for test case generation but
we explain the DBPC first because it is known from verification.

3.1 Disjunctive Branch Precondition

The disjunctive branch precondition is a formula that is suitable for detecting
infeasible paths or unsatisfiable test data constraints. It fulfills this purpose
however only if it is constructed from a satisfied specification giving rise to the
full disjunctive branch precondition as explained below.

Definition 5. Let σ = (pre, post, M), ϕ ∈ Fml a branch condition, and Msk ⊂
Σ new symbols for the symbols in M .

The disjunctive branch precondition (DBPC) for ϕ is the formula:

pre → {M := Msk}(post → ϕ)

Definition 6. Let σ be a specification of a program p ∈ π, and ϕ ∈ Fml a
branch condition. The full disjunctive branch precondition (F-DBPC) is the
conjunction of:

• the condition that σ is satisfied by p (see Section 2.4)
• the disjunctive branch precondition (DBPC) for ϕ

For example for the specification (x′
.
= x ∧ y > 0, x′ < x, {x}), the program

x=x+y; and the branch condition x
.
= y the DBPC is:

x′
.
= x ∧ y > 0→ {x := xsk}(x′ < x → x

.
= y)

x′
.
= x ∧ y > 0→ (x′ < xsk → xsk

.
= y) (simplified) (2)

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

40



Lemma 1. Let Msk ⊂ Σ be new symbols for M ⊇ Mod(p) (see Section 2.3).
The following rule is locally correct modulo Msk.

pre =⇒ 〈p〉post pre =⇒ {M := Msk}(post → ϕ)
pre =⇒ 〈p〉ϕ (3)

Given a correct specification and branch condition ϕ the rule says that the
DBPCϕ is a precondition of pre → 〈p〉post. Note that the two premisses of
the rule constitute the F-DBPC. The sub-formula {M := Msk}(post → ϕ) is a
precondition of 〈p〉ϕ which is typically the precondition generated by weakest
precondition calculi for the purpose of verification. For the purpose of test data
generation using a constraint solver it is not suitable because not every model of
this formula (solution of the constraint solver) ensures that after executing p the
branch condition ϕ holds. For instance the model s = {x 7→ 0, xsk 7→ 0, y 7→ 2}
satisfies the DBPC (2) but not 〈p〉ϕ, i.e. s 2 〈p〉ϕ.

The DBPC is however useful for solving the problem

“no test data exists such that after the execution of p, ϕ is satisfied”

for identifying infeasible execution paths before the attempt to generate test
data. To do so let’s assume we want to generate test data which represents a
state s such that it satisfies the precondition, i.e. s � pre, and s � 〈p〉ϕ. We
can determine whether pre∧〈p〉ϕ is unsatisfiable by proving ¬pre∨ [p]¬ϕ. This
means, if (pre, post, M) is a specification satisfied by p and we prove the validity
of pre → {M := Msk}(post → ¬ϕ), then we know, without the need to inspect
all paths of p with symbolic execution, that there is no state that satisfies the
precondition and 〈p〉ϕ.

Note that there may exist states satisfying 〈p〉ϕ but not pre. In this case,
however, the specification is useless because we can make no assumption about
the postcondition.

In order to prove lemma 1 we need the following rule.

Lemma 2. The following rule is locally correct modulo the new symbols Msk ⊂
Σ for the symbols M ⊇ Mod(p)

pre =⇒ {M := Msk}post
pre =⇒ 〈p〉post (4)

We omit a detailed proof of rule (4) but its semi-local correctness (see Section
2.1) is obvious: if for all possible assignments of values (see Section. 2.3) to the
modifiable program variables the postcondition is true, i.e. {M := Msk}post,
then for any program variable assignments in p the postcondition must be true,
i.e. 〈p〉post.

C. Gladisch: Verification-based Test Case Generation with Loop Invariants and Method Specifications

41



We start the proof of lemma 1 with the tautology pre → 〈p〉(((post ∧
(post → ϕ))) → ϕ) and obtain through equivalence transformations the tautol-
ogy: (pre → (〈p〉post∧〈p〉(post → ϕ)) → (pre → 〈p〉ϕ). This is again equivalent
to the local correctness of the rule:

pre =⇒ (〈p〉post) ∧ 〈p〉(post → ϕ)
pre =⇒ 〈p〉ϕ

The open branches of the following proof tree are the ones of rule (3).

pre =⇒ 〈p〉post
pre =⇒ {M := Msk}(post → ϕ)

pre =⇒ 〈p〉(post → ϕ) (using (4))

pre =⇒ (〈p〉post) ∧ 〈p〉(post → ϕ)
pre =⇒ 〈p〉ϕ

�

3.2 Conjunctive Branch Precondition

The conjunctive branch precondition is the precondition of branch conditions in
the program that we suggest for test data generation using a constraint solver
(see Section 1.1). To save space we define it within the definition of the full
conjunctive branch precondition which adds a constraint on the involved speci-
fication.

Definition 7. Let σ = (pre, post, M) with M ⊇ (Mod(p) ∩ Σ(pre, post)) be a
specification for p ∈ π, where Σ(pre, post) denotes the symbols occuring in pre
and post. The full conjunctive branch precondition (F-CBPC) for a formula ϕ
is the conjunction of:

• σ is strong for p : (pre ∧ {M := Msk}post) → 〈p〉M .
=∀ Msk

• the conjunctive branch precondition for ϕ (CBPCϕ):

pre ∧ {M := Msk}(post ∧ ϕ)

Theorem 1. Each state satisfying the F-CBPC for ϕ also satisfies 〈p〉ϕ.

The CBPCϕ is a precondition for 〈p〉ϕ that is suitable for test data generation
using constraint solvers: (1) if pre, post, and ϕ are first-order logic formulae, then
CBPCϕ can be trivially simplified to a first-order formula and (2) every model
(test data) of the CBPCϕ guarantees that after executing p the condition ϕ is
satisfied if σ is strong in this state. For instance, for σ = (x′

.
= x ∧ y > 0, x′ <

x, {x}), the program x=x+y; and the branch condition x
.
= y the CBPC is:

x′
.
= x ∧ y > 0 ∧ {x := xsk}(x′ < x ∧ x

.
= y)

x′
.
= x ∧ y > 0 ∧ (x′ < xsk ∧ xsk

.
= y) (simplified) (5)

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

42



A model of this condition is the state s = {x 7→ 0, x′ 7→ 0, xsk 7→ 1, y 7→ 1}. It
satisfies also the strength condition, i.e. s � (x′

.
= x ∧ y > 0 → {x := xsk}x′ <

x) → 〈p〉x .
= xsk, and therefore the formula 〈p〉x .

= y as well.
The CBPC differs from preconditions generated with weakest precondition

calculi because it is stronger, which is our objective. Interesting is that in contrast
to the F-DBPC, the F-CBPC does not require a satisfied specification. Instead
the specification must be strong. For example consider the specification σ2 =
(x′

.
= x, x

.
= 2z ∧ x′

.
= z ∧ y

.
= z, M) with M = {x}. It is not satisfied by p but

it is strong and therefore CBPCx
.
=y implies 〈p〉x .

= y.
Even though the anonymous update {M := Msk} destroys information about

the pre-state that is encoded in post and ϕ the strength condition ensures that
just enough information is preserved to ensure the satisfaction of 〈p〉ϕ. In con-
trast to the F-DBPC the F-CBPC is more sensitive to the size of the modifier
set. The specification σ is not strong if, e.g., M = {x, y}.

We prove theorem 1 by proving the validity of the sequent

(pre ∧ {M := Msk}post) → 〈p〉M .
=∀ Msk, pre ∧ {M := Msk}(post ∧ ϕ)⇒ 〈p〉ϕ

This sequent can be simplified to (let ϕ′ = {M := Msk}ϕ):

〈p〉M .
=∀ Msk, ϕ

′ =⇒ 〈p〉ϕ

Since ϕ′ is rigid for p we can use the equivalence ϕ′ ≡ 〈p〉ϕ′ and obtain

〈p〉M .
=∀ Msk, 〈p〉ϕ′ =⇒ 〈p〉ϕ
M

.
=∀ Msk, ϕ

′ =⇒ ϕ

Applying M
.
=∀ Msk on ϕ yields ϕ′ resulting in ϕ′ =⇒ ϕ′. �

3.3 Using the CBPC if the Specification is satisfied but weak

According to lemma 1 the DBPC requires the involved specification to be sat-
isfied and allows then the detection of infeasible execution paths using theorem
provers. According to theorem 1 the CBPC requires the involved specification
to be strong to provide a constraint for test data generation using a constraint
solver that ensures the satisfaction of a desired branch condition.

We show that the CBPC can be used for test data generation even in use-
cases (e.g. it may stem from a verification proof) where it is known that the
specification constituting the CBPC is satisfied but not whether it is strong.
Assume that the specification is partially correct but we do not know whether it
is strong. Generating test data, i.e. a partial state that gives meaning to program
variables, for which the CBPC is unsatisfiable is undesired. The reason is that
if the specification is correct for this state, then it is guaranteed that either the
branch condition is unsatisfied or the precondition is unsatisfied. In the latter
case we can make no assumptions about the postcondition.

C. Gladisch: Verification-based Test Case Generation with Loop Invariants and Method Specifications

43



Theorem 2. Let σ = (pre, post, M) be a specification, p ∈ π, and ϕ ∈ Fml.
If σ is satisfied by p and s 2 CBPCσ

ϕ, then either s 2 pre or s 2 〈p〉ϕ
The theorem states that if the specification is satisfied but eventually weak,

then the CBPC does not guarantee that every model s ∈ S of the CBPC ensures
s � 〈p〉ϕ but it reduces the search space of the constraint solver appropriately.

Proof . Let sΣ\Msk
∈ SΣ\Msk

be a partial state where CBPC is unsatisfiable.
This means that for each partial states sMsk

∈ SMsk
the CBPC is not satisfied

in the total state s = (sΣ\Msk
∪ sMsk

) ∈ S (see Section 2.1):

sΣ\Msk
2 pre ∧ {M := Msk}(post ∧ ϕ)

sΣ\Msk
� ¬pre ∨ {M := Msk}¬(post ∧ ϕ)

sΣ\Msk
� pre → {M := Msk}(post → ¬ϕ)

Since pre → {M := Msk}post → ¬ϕ is the DBPC¬ϕ and since we assume that
the specification is satisfied lemma 1 implies sΣ\Msk

� ¬pre ∨ 〈p〉¬ϕ. Note that
〈p〉¬ϕ implies ¬〈p〉ϕ (see Section 2.1). �

4 Applications of the CBPC

4.1 Branch Precondition of Loops and Methods

In this section we show how to compute a precondition for a branch condition
that follows a method call or loop by constructing the CBPC. Given is a pre-
and postcondition prepq, postpq ∈ FmlFOL for a sequence of statements p; q;,
and a specification of p : σ = {prep, postp, M}. Testing the program p; q; wrt.
σ is equivalent to testing the DL-formula: prepq → 〈p;q;〉postpq.

The goal is to test the formula such that the test cases ensure the execution
of each branch in q. Symbolic execution of q yields branches that using Dynamic
Logic can be represented in form of formulae as follows

prepq → 〈p〉(ϕ1 → 〈q1〉postpq) . . . prepq → 〈p〉(ϕn → 〈qN〉postpq)

where ϕ1, . . . , ϕn ∈ Fml are the branch conditions for executing the sub-pro-
grams q1 , . . . ,qN ∈ π in q. Using the specification σ and a branch condition ϕi

with i ∈ 1 . . . n the CBPCϕi
can be constructed according to Def 7. If σ is strong,

then using theorem 1 the precondition of a branch prepq → 〈p〉(ϕi → 〈qi〉postpq)
is obviously the CBPCϕi

:

prepq ∧ prep ∧ {M := Msk}(postp ∧ ϕi)

because it ensures in states where it is true that also 〈p〉ϕi is true.
As an example we construct the branch precondition that ensures the exe-

cution of C() in listing 1.2 of Figure 1. The initial formula to test is:

true︸︷︷︸
prepq

→ 〈i=0;D() ;〉︸ ︷︷ ︸
p

〈if(i==20){C();}〉︸ ︷︷ ︸
q

true︸︷︷︸
postpq

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

44



We make the trivial choices for prepq and postpq in order to simplify this example.
Symbolic execution of the if -statement yields two branches according to the case
distinction of the if -statement.

〈i=0;D();〉︸ ︷︷ ︸
p

(i
.
= 20︸ ︷︷ ︸
ϕ1

→ 〈C();〉︸ ︷︷ ︸
q1

true︸︷︷︸
postpq

) and 〈i=0;D() ;〉︸ ︷︷ ︸
p

(¬(i
.
= 20)︸ ︷︷ ︸
ϕ2

→ 〈〉︸︷︷︸
q2

true︸︷︷︸
postpq

)

The interesting branch is where i
.
= 20 is true after the execution of D(). In

order to compute the precondition we use the specification of D() consisting of
the pre- and postconditions: i < n and i

.
= n. Note that the postcondition of

D() and the branch condition i
.
= 20 are unrelated formulae, i.e. neither i

.
= n

implies i
.
= 20 nor does i

.
= 20 imply i

.
= n. The CBPC is

i < n ∧ {i := isk}i
.
= n ∧ i

.
= 20

Applying the update results in the formula i < n ∧ isk
.
= n ∧ isk

.
= 20 which in

fact implies the desired branch precondition i < 20 ∧ n
.
= 20. This example is

almost identical for listing 1.1 using a loop invariant.

4.2 Loop Branch Precondition

The loop branch precondition (LBPC) is a precondition of a loop that ensures
that during the execution of the loop a certain branch is taken, e.g. to execute
A() in listing 1.1 (Fig 1). In the following example we derive a loop branch pre-
condition by constructing a CBPC from a loop invariant and branch condition.

JAVA (1.3)

1 MyHashMap incHM(IDObj[] a){

2 int i = 0; MyHashMap map = new MyHashMap();

3 while(i < a.length ){

4 if(map.count > (map.size*3)/4){

5 tmp = new MyHashMap(map.size*2);

6 tmp.copyFrom(map); map = tmp;

7 }

8 map.put(a[i].id, a[i]); i++;

9 }

10 }

JAVA

We assume the following behavior of the program in listing 1.3. The construc-
tor MyHashMap() creates a hash map object with the initial capacity map.size
.
= 8. The field map.count tracks the current number of elements in the map. If
during loop iteration the branch condition map.count > (map.size*3)/4 be-
comes true, then a new hash map of size map.size*2 is created. The statement

C. Gladisch: Verification-based Test Case Generation with Loop Invariants and Method Specifications

45



tmp.copyFrom(map); copies all elements from the old hash map to the new
hash map so that tmp.count

.
=map.count. The method put(x,y) stores y in

the hash map under key x and overwrites any previously store entry under the
same key.

The goal is to compute the CBPC for the specification of the loop and
branch condition map.size∗3/4 < map.count, which we abbreviate with ϕ. The
specification of loop body chains before loop termination is σ = {I, I ∧ lc, M}
(see Section 2.4), where M = {map, size, count, i}, the loop condition lc is
i < a.length, and I consists of the invariants

mapold.sizeold 6 map.size︸ ︷︷ ︸
inv1

∧map.count 6 N︸ ︷︷ ︸
inv2

∧map.count 6 i︸ ︷︷ ︸
inv3

For the precondition of incHM() we assume that a 6=null and that N ∈ N is
the total number of distinct elements in the array a formalized by

a 6= null ∧ ∀x.0 6 x < N 6 a.length → ∃y.0 < y < a.length ∧ a[y].id = x

For this setting the resulting CBPC is:

{mapold, sizeold, countold, iold} .
=∀ {map, size, count, i} ∧ I (6)

∧ {{map, size, count, i} := {mapsk, sizesk, countsk, isk}}(I ∧ lc ∧ ϕ)

Applying the update on (I ∧ lc ∧ ϕ) yields the conjunction

mapold.sizeold 6 mapsk.sizesk︸ ︷︷ ︸
inv′

1

∧mapsk.countsk 6 N︸ ︷︷ ︸
inv′

2

∧mapsk.countsk 6 isk︸ ︷︷ ︸
inv′

3

∧ isk < a.length︸ ︷︷ ︸
lc′

∧ (mapsk.sizesk ∗ 3)/4 < mapsk.countsk︸ ︷︷ ︸
ϕ′

that can be simplified as follows. From inv′1, ϕ′, and inv′2 follows (mapold.sizeold∗
3)/4 < N . From phi′, inv′3, and lc follows (mapold.sizeold ∗ 3)/4 + 1 < a.length.
Using the equations in (6) we can replace mapold.sizeold with map.size deriving
the important constraint from the CBPC:

(map.size ∗ 3)/4 < N ∧ (map.size ∗ 3)/4 + 1 < a.length (7)

This precondition guarantees, when satisfied just before the execution of the loop
of listing 1.3, that during the iteration of the loop the then-branch of the if -
statement is entered. In order to transfer the CBPC into the pre-sate of incHM()
the effect of line 2 has to be taken into account. Symbolic execution of line 2
results in a sequence of updates. One of them is {map.size := 8} according to
our description of the listing. Applying the update on (7) results in the desired
precondition of incHM() : (8 ∗ 3)/4 < N ∧ (8 ∗ 3)/4 + 1 < a.length.

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

46



5 Related Work

This work is an extension of [9] and [4] —both developed within the KeY-project
[5]. In [9] verification-based testing is introduced as a method for deriving test
cases from verification proofs. In [4] we present a white-box testing approach
which combines verification-based specification inference and black-box testing
allowing to combine different coverage criteria. Both approaches consider the
derivation of test cases based on loop invariants by example but not in the
depth as it is done in this work.

Other approaches using symbolic execution to derive test cases are, e.g. [16,
15, 7]. The tools Symstra [16] and Unit Meister [15] use a bound on the number
of analysed loop iterations and [7] uses a bound on the size of the analysed data
structures. The latter approach yields an implicit bound on set of symbolically
executed paths.

How to compute a precondition for a given condition after the execution of
a program has been a research topic especially in the context of weakest precon-
dition calculi for the purpose of software verification [8, 14, 11]. The disjunctive
branch precondition (DBPC) that we use to detect unsatisfiable constraints for
test data generation turns out to be the precondition that most weakest precon-
dition calculi generate for verification. This precondition is however too weak for
the purpose of test data generation because not every model of the precondition
yields a test case that executes the program in the desired way.

The generation of test cases based on specifications has been suggested, e.g.,
in [2] and [13]. In [2] a software development methodology is described whose
main artifacts are invariants. In [13] the generated test cases are based on effect
predicates derived from executable specifications. Effect predicates are related
to strong specifications in this paper. We use however first-order logic based
specifications and executable JAVA source code.

6 Conclusion

We have shown how test cases can be generated for testing program branches
that occur within loops and after the execution of loops or complex methods.
The challenge is to generate a precondition for a branch condition of a pro-
gram branch. This may be infeasible or impossible with precondition computa-
tion based on symbolic execution. Our approach is to compute the conjunctive
branch precondition (CBPC), which is a precondition generated from a branch
condition and a specification. The CBPC is stronger than the disjunctive branch
precondition (DBPC) that is usually generated by weakest-precondition calculi.

Our contributions are the described approach and the analysis of the two
kinds of preconditions, i.e. CBPC and DBPC, as well as of the required properties
of the involved specifications. We proved the correctness of (1) a theorem for

C. Gladisch: Verification-based Test Case Generation with Loop Invariants and Method Specifications

47



test data generation, (2) a rule for detecting infeasible execution paths, and
(3) another theorem showing the relation between the CBPC and DBPC. The
CBPC can improve test case generation even if the F-CBPC, which additionally
requires the involved specification to be strong, is not satisfied. A suitable use-
case for our approach is, e.g., the generation of test cases from verification proofs
because the CBPC occurs, except for some details, as a sub-formula in proof
branches. The approach is implemented in the KeY-system.

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mostowski,
A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software and System Modeling, 4:32–54,
2005.

[2] R.-J. Back, J. Eriksson, and M. Myreen. Testing and verifying invariant based programs in the
SOCOS environment. In Y. Gurevich and B. Meyer, editors, TAP, volume 4454 of Lecture Notes
in Computer Science, pages 61–78. Springer, 2007.

[3] B. Beckert. A dynamic logic for the formal verification of Java Card programs. In I. Attali and
T. Jensen, editors, Java on Smart Cards: Programming and Security. Revised Papers, Java Card
2000, International Workshop, Cannes, France, LNCS 2041, pages 6–24. Springer, 2001.

[4] B. Beckert and C. Gladisch. White-box Testing by Combining Deduction-based Specification
Extraction and Black-box Testing. In Y. Gurevich, editor, Proceedings, Testing and Proofs,
Zürich, Switzerland, LNCS. Springer, 2007.

[5] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software: The
KeY Approach. LNCS 4334. Springer, 2007.

[6] D. Cansell and D. Méry. Foundations of the B method. Computers and Artificial Intelligence,
22(3), 2003.

[7] X. Deng, J. Lee, and Robby. Bogor/Kiasan: A k-bounded Symbolic Execution for Checking
Strong Heap Properties of Open Systems. In ASE, pages 157–166, 2006.

[8] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ, 1976.
[9] C. Engel and R. Hähnle. Generating Unit Tests from Formal Proofs. In Y. Gurevich, editor,

Proceedings, Testing and Proofs, Zürich, Switzerland, LNCS. Springer, 2007.
[10] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical

Logic, volume II: Extensions of Classical Logic, chapter 10, pages 497–604. Reidel, Dordrecht,
1984.

[11] B. Jacobs. Weakest pre-condition reasoning for Java programs with JML annotations. J. Log.
Algebr. Program., 58(1-2):61–88, 2004.

[12] P. Rümmer. A language for sequential, parallel and quantified updates of first-order structures.
March 2005.

[13] M. Satpathy, M. Butler, M. Leuschel, and S. Ramesh. Automatic testing from formal specifica-
tions. In Y. Gurevich and B. Meyer, editors, TAP, volume 4454 of Lecture Notes in Computer
Science, pages 95–113. Springer, 2007.

[14] K.-D. Schewe and B. Thalheim. A generalization of dijkstra’s calculus to typed program speci-
fications. In FCT, pages 463–474, 1999.

[15] N. Tillmann and W. Schulte. Parameterized unit tests with unit meister. In ESEC/SIGSOFT
FSE, pages 241–244, 2005.

[16] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generating object-
oriented unit tests using symbolic execution. In Proceedings, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Edinburgh, UK, LNCS 3440, pages 365–381.
Springer, 2005.

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

48



Extracting Bugs from the Failed Proofs in

Verification via Supercompilation

Alexei Lisitsa1 and Andrei P. Nemytykh2⋆

1 Department of Computer Science, The University of Liverpool
A.Lisitsa@csc.liv.ac.uk

2 Program Systems Institute of Russian Academy of Sciences
nemytykh@math.botik.ru

Abstract. If a program q produces result satisfying property P then its composition
with a program implementing the test for P will never return the negative result of the
test. In the verification via supercompilation approach a proof of correctness of a pro-
gram is done by transformation of the above composition into an equivalent form from
which the required property of composition (“never returns the negative result”) can
be easily established by simple syntactical check. A powerful program transformation
technique known as supercompilation is used. In the previous work we have applied this
approach to the automated verification of various parameterized protocols. In this pa-
per we show how to extract bugs (execution traces violating correctness condition) from
the failed proofs of correctness via testing and supercompilation. As a case studies we
consider verification of Dragon cache coherence protocol and a Client-Server protocol,
in both cases starting with incorrect specifications.

1 Introduction

V. Turchin [34] has proposed the following scheme combining the testing and
program transformation for proving properties of the (functional) programs:. . .
if we want to check that the output of a function F (x) has the property P (x) we
can try to transform the function P (F (x)) into an identical T . In principle, any
program transformation technique preserving equivalence of the programs can
be used within the scheme and Turchin in [34–36] has illustrated the approach
with simple examples using supercompilation (supervised compilation) for pro-
gram transformation. Despite being very natural the approach has not attracted
much attention and as far as we know has not been used in verification until
recently. Having said that we should notice that a range of other verification
methods based on program transformation have been developed and/or pro-
posed [12, 16, 17, 31, 13]. In [18–22] we extended the Turchin’s proposal to the
verification of parameterized protocols using particular scheme parameterised
testing and reported about successful automated verification experiments us-
ing SCP4 supercompiler [29, 30]. The web page [23] is a reference point for the

⋆ The second author is supported by the Program for Basic Research of the Presidium of Russian
Academy of Sciences (as a part of “Development of the basis of scientific distributed informational-
computing environment on the base of GRID technologies”), and the Russian Ministry of Sciences
and Education (contract 200777-4-1.4-18-02-064).

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

49



growing collection of protocols, programs and algorithms successfully verified by
verification via supercompilation method. In [21] we presented supercompilation
process within verification scenario as an inductive theorem proving for term
rewriting systems. Notice that supercompilation is a program transformation
technique based on a kind of symbolic execution, so the overall approach can be
defined also as the program proving via testing and symbolic execution.

It has turned out that the approach is not only powerful in proving the
properties but also informative in the situations when the proofs fail. When
syntactical form of residual (transformed) program does not allow to derive
the correctness property it may often lead to the extraction of explicit execution
traces violating the property, or guide the further tests on the program eventually
leading to the bugs discovery. In the present paper we discuss these aspects of
the method and illustrate them by two case studies.

The paper is organised as follows. In the next section we give a general
overview of our verification via parameterised testing and supercompilation ap-
proach. Then in Section 3 we briefly introduce the functional programming
language Refal used in experiments. In Section 4 we outline supercompilation
program transformation technique and provides some details of particular su-
percompiler SCP4. Sections 5 and 6 present case studies. Section 7 presents
discussion and outlines further directions.

2 Parameterised testing and verification

In this section we describe briefly our general technique for the verification
of parameterised systems. It is an adaptation of the Turchin’s proposal to the
case of non-deterministic, in general, protocols.

The first important assumption is that the protocol to be verified has to be
encoded into a functional program. The paper [11] discusses in details different
aspects of such encoding and as we found afterwards we use the same principle
of encoding of non-deterministic protocols as discussed in that paper: “we view
a non-deterministic agent as an incompletely specified deterministic one” [11].

The scheme works as follows. Let S be a parameterised system (a protocol)
and we would like to establish some safety property P of S. We write a func-
tional program ϕS encoding a system S meaning ϕS simulates execution of S

for n steps, where n is an input parameter. If the system is non-deterministic,
then, following to the above-mentioned principle, an additional parameter x̄ is
provided, whose value is assumed to be a sequence of choices at the branching
points of execution, e.g. it may be a string of characters labelling the choices.

Thus, we assume that given the values of input parameters n and x̄, the
program ϕS returns the state of the system S after the execution of n steps of the
system, following the choices provided by the value of x̄. Let TP ( ) be a testing

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

50



program, which given a state s of S returns the result of testing the property
P on s (True or False). Consider a composition TP (ϕS(n, x̄)). This program
first simulates the execution of the system and then tests the property required.
Now the statement ”the safety property P holds in any possible state reachable
by the execution of the system S” is equivalent to the statement ”the program
T (ϕP (n, x̄)) never returns the value False, no matter what values are given to the
input parameters”. Here we assume additionally that both programs ϕP and T

terminate for all possible inputs, but still may terminate with an abnormal stop.
The syntactical property of the residual program sufficient to conclude that the
program never returns the value False is simple: it does not contain operator
return False. Of course, it is not in general, necessary condition – there might
be some branches in the program with return False operators of which are never
executed. Obviously, precise form of the condition depends on the language of
implementation.

In practical implementation of the scheme we use a functional programming
language Refal [37, 38] to implement a program TP (ϕS(n, x̄)) and a supercom-
piler SCP4 (an optimizer) [26, 29, 30] to transform a program to a form, from
which one can easily establish the required property.

In this paper we focus mainly on the situations when the form of a su-
percompiled version of the program TP (ϕS(n, x̄)) does not allow to derive the
property. It may be the case the program transformer has proved to be not pow-
erful enough to eliminate all unreachable occurrences of return False operator
while the program does satisfy correctness condition. On the other hand, it may
indicate that, indeed, the program does not satisfy the property.

As we have discovered during experiments, the form of residual program
may suggest tests for the original program, which may lead to the discovery
of the execution traces violating correctness condition. We illustrate this point
with the case study of a parameterised cache coherence Xerox PARC Dragon
protocol. Its specification given in [9] has turned out to be incorrect and we show
how supercompilation guided analysis led to the discovery of incorrect traces.
To highlight the power of the approach we also briefly discuss the successful
verification of the correct version of the same protocol.

It may also be the case, that despite formally successful verification, the form
of the residual program has easily recognizable property, witnessing the problems
with initial specification. Our second case study (verification of Client-server
protocol) demonstrates such a case.

3 Refal programming language

The Refal programming language [37] (Recursive Functions Algorithmic Lan-
guage) is a first-order strict functional language. Unlike LISP the language is
based on the model of computation known as Markov’s algorithms.

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

51



program ::= $ENTRY definition+

definition ::= function-name { sentence;+ }

sentence ::= left-side = expression

left-side ::= pattern

expression ::= empty | term expression | function-call expression

function-call ::= <function-name argument>

argument ::= expression

pattern ::= empty | term pattern

term ::= SYMBOL | variable | (expression)

variable ::= e.variable-name | s.variable-name | t.variable-name

empty ::= /* nihil */

Refal data are defined by the grammar:

d ::= (d1) | d1 d2 | SYMBOL | empty

Roughly speaking, a program in Refal is a term rewriting system. The se-
mantics of the language is based on pattern matching. As usually, the rewriting
rules are ordered to match from the top to the bottom. The terms are generated
using two constructors. The first is concatenation. It is binary, associative and
is used in infix notation, which allows us to drop its parentheses. The blank is
used to denote concatenation. The second constructor is unary. It is syntactically
denoted by its parentheses only (that is without a name). The unary construc-
tor is used for constructing tree structures. Formally, every function is unary.
However, n-ary functions can be easily represented using second term construc-
tor (parentheses) for separation of the function arguments. Empty sequence is a
special basic ground term. This term is denoted with nothing and called “empty
expression”. It is the neutral element (both left and right) of concatenation. All
other basic ground terms are named as “symbols”. There exist three types of
variables - e.name, s.name and t.name. An e-variable can take any expression as
its value, an s-variable can take any symbol as its value and t-variable can take
any term as its value (a term is either a symbol or an expression in the structure
brackets). For every sentence its set of variables from the left-hand side includes
the set of variables from the right-hand side; there are no other restrictions on
the variables.

Given a current active function call, the step of Refal machine is defined as
the following sequence of actions: (1) pattern matching, (2) replacement of the
right-hand side variables with their values obtained as the result of the pattern
matching, (3) replacement of the active function call (in the function stack) with
the updated right-hand side and labelling of a new function call on the top of
the changed stack as active.

Example 1. The following program replaces every occurrence of the identifier
Lisp with the identifier Refal in an arbitrary Refal datum.

$ENTRY Go { e.inp = <Repl (Lisp Refal) e.inp>; }

Repl {

(s.x e.v) = ;

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

52



(s.x e.v) s.x e.inp = e.v <Repl (s.x e.v) e.inp>;

(s.x e.v) s.y e.inp = s.y <Repl (s.x e.v) e.inp>;

(s.x e.v) (e.y) e.inp = (<Repl (s.x e.v) e.y>) <Repl (s.x e.v) e.inp>;

}

Consider a trace of a Refal computation for the program given above. Let
the computation start with the call

<Go (A Lisp)>.

Refal datum (A Lisp) represents a binary tree with the leaves A, Lisp. The
computation proceeds with the following steps:

2: <Repl (Lisp Refal) (A Lisp)>

3: (<Repl (Lisp Refal) A Lisp>) <Repl (Lisp Refal)>

4: (A <Repl (Lisp Refal) Lisp>) <Repl (Lisp Refal)>

5: (A Refal <Repl (Lisp Refal)>) <Repl (Lisp Refal)>

6: (A Refal) <Repl (Lisp Refal)>

7: (A Refal)

Example 2. Another example is the function append, which can be defined in
Refal in one line:

$ENTRY append { (e.xs) (e.ys) = e.xs e.ys; }

4 Supercompilation and the supercompiler SCP4

In this section we present some details of supercompilation process (which are
relevant to the subject of this paper), as it is implemented in the supercompiler
SCP4. More details can be found in [26, 30, 28, 29].

Consider a program written in some programming language together with
a partially defined (parameterised) input entry of the program. Such a pair
defines a partial input-output mapping f: D 7→ D, where D is the data set of
the language. By definition, a supercompiler is a transformer of such pairs.

The supercompiler SCP4 iterates an extension of the interpretation of Refal
steps (pattern matching plus constructing a right side), called driving [33], on
parameterised sets of the input entries. Driving constructs a directed tree of
all possible computations for the given parameterised input entry and a given
Refal step. The edges of this tree are labelled with predicates over values of the
parameters. The predicates specify concrete computation branches and describe
the narrowing of the parameters (unknown data) along the chosen branches3.

Iteration of the driving unfolds a potentially infinite tree of all possible com-
putations. The computations can depend on the values of the parameters that
can be unknown during transformation. The supercompiler reduces in the pro-
cess the redundancy that could be present in the original program. It folds the

3 In this sense the driving works similarly to a PROLOG interpreter. Both tools accept parameters
(free variables) as their input data and narrow the parameters.

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

53



tree into a finite graph of states and transformations between possible config-
urations of the computing system. To make a folding possible a generalization
procedure is used. Sometimes it may lead to the lost of some information on the
structure of arguments of configurations.

If it is not possible to reduce a current configuration (to be developed in the
meta-tree) to a previous configuration (on the path from the tree root to the
latter) then generalization looks for a previous configuration, which is similar
to the current. A variant of homeomorphic embedding pre-order specifies the
similarity relation on the configurations [15, 32, 26]. Only similar configurations
are generalized.

In a weak strategy of supercompilation all configurations appeared in the
meta-tree are analyzed by the generalization and this ensures the termination
of the whole supercompilation process.

In order to perform as many actions of the input program as possible in
supercompile time the strong strategy of supercompilation excludes from the
generalization those parameterised configurations which appear in the meta-
tree nodes with one outgoing branch. In general, it may allow more powerful
transformations to be achieved, but the termination of supercompilation is not
guaranteed in that case.

Thus, we emphasize that the output of the supercompiler is defined in terms
of the parameters (semantic objects). The resulting definition is constructed
solely based on the meta-interpretation of the source program rather than by
a step-by-step transformation of the program. The crucial property of the su-
percompilation procedure, that we rely upon in our verification methodology,
is

Property 1. The output pair (the residual program and its input entry) defines
an extension of the partial mapping defined by the corresponding input pair.

5 A case study: verification of the Xerox PARC Dragon

protocol

Cache coherence protocols play an important role in models of shared memory
multiprocessor systems. Usually, in such systems, every individual processor has
its own private cache memory, which is used to hold local copies of main memory
blocks [14]. While reducing the access time, this approach poses the problem
of cache consistency, whereby one has to ensure that the copies of the same
memory block in the caches of different processors are consistent. Such data
consistency is supported by cache coherence protocols, which typically operate as
follows: every processor is equipped with a finite state control, which reacts to the
read and write requests. Abstracting from the low-level implementation details
of read, write and synchronisation primitives, one may model cache coherence

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

54



protocols as families of identical finite state machines, with the number of the
machines being a parameter, together with a primitive form of communication:
if one automaton makes a transition (an action) a, then it is required that
all other automata make a complementary transition (reaction) ā [7, 9]. The
computation is assumed to be non-deterministic, i.e. at every step one automaton
is chosen to make one of the available actions. Because in the model automata
are assumed identical, there is a lot of symmetry in their behaviour, so for
the analysis one may apply a counting abstraction and keep track only of the
number of automata in every possible (local) states. That gives Extended Finite
State Machines formulation of the parameterized protocols. Extended Finite
State Machines (EFSM) [3] are essentially transition systems with data variables
ranging over non-negative numbers. EFSM-transitions are linear transformations
with the guards expressed as linear constraints.

5.1 An EFSM model of the Xerox PARC Dragon protocol

As a case study we consider in this section the verification of the parameterised
Xerox PARC Dragon cache coherence protocol. We start with its specification
in terms of Extended Finite State Machines (EFSM) model taken from [6]. Here
dirty, shared clean, exclusive, shared dirty, invalid are non-negative integer
variables of EFSM model, which represent counting abstraction of an original
parameterised automata model. That means that during the run of EFSM, the
value of, for example, shared clean variable indicates the number of automata
in the state shared clean. The rules below describe the dynamic of an EFSM
model of the Dragon protocol (as described in [6]). Starting with some initial
valuation of variables, the model may apply non-deterministically any of the
applicable rules. Applicability of the rules defined by left-hand sides of rules
(guards). For example, rule rm1 is applicable to a state, only if invalid ≥ 1
and dirty = shared clean = shared dirty = exclusive = 0. The application of
a rule is an execution of the update (assignment) expressed by the right-hand
side of the rule. For example, for the rule rm1 execution of the update amounts
to decreasing the value of variable invalid by 1 and increasing the value of
exclusive by 1.

(rh) dirty + shared clean + exclusive + shared dirty ≥ 1 .
(rm1) invalid ≥ 1, dirty = shared clean = shared dirty = exclusive = 0→ invalid′ = invalid− 1,

exclusive′ = 1 + exclusive.
(rm2) invalid ≥ 1, shared clean + shared dirty + exclusive + dirty ≥ 1 → invalid′ = invalid− 1,

dirty′ = 0, exclusive′ = 0, shared dirty′ = dirty + shared dirty,
shared clean′ = 1 + exclusive + shared clean.

(wm1) invalid ≥ 1, dirty = shared clean = shared dirty = exclusive = 0→ invalid′ = invalid−1,
dirty′ = 1 + dirty.

(wm2) invalid ≥ 1, shared clean + shared dirty + exclusive + dirty >= 1→ invalid′ = invalid−

1, exclusive′ = 0, shared clean′ = shared dirty + exclusive + shared clean, shared dirty′ = 1.
(wh1) dirty ≥ 1 →.
(wh2) exclusive ≥ 1 → exclusive′ = exclusive− 1, dirty′ = 1 + dirty .

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

55



(wh3) shared dirty = 1, shared clean = 0 → shared clean′ = 0, dirty′ = 1 + dirty.

(wh4) shared dirty = 0, shared clean = 1, → shared clean′ = 0, dirty′ = 1 + dirty.

(wh5) shared dirty + shared clean ≥ 2 → shared clean′ = shared clean + shared dirty − 1,
shared dirty′ = 1.

Correctness of the parameterized Xerox Parc Dragon protocol according to
[6] can be expressed in terms of the EFSM model as follows: the system started
in any initial state (an assignment of the variables) satisfying invalid ≥ 1 and
shared clean = shared dirty = dirty = exclusive = 0 and evolving according
to the rules above can never get into the state satisfying one of the conditions
below:

C1 dirty ≥ 2;

C2 exclusive ≥ 2;

C3 exclusive + shared clean + shared dirty ≥ 1, dirty ≥ 1;
C4 exclusive ≥ 1, shared clean + shared dirty ≥ 1.

It has turned out though that the specification given in [6] and shown
above is incorrect. We have found the following trace of the protocol execution
which violates the correctness condition. Starting with the initial configuration
invalid = 3, shared clean = shared dirty = dirty = exclusive = 0, the se-
quence wm1, wm2, wh3 of the rule application leads to the configuration with
dirty = 2 (i.e. satisfying condition C1 above). This trace has been obtained by
the analysis of a failed attempt of verification via supercompilation. We decsribe
now this attempt.

5.2 Refal encoding of the EFSM model

We apply the technique described in Section 2 and encode the EFSM model
and the correctness test in a Refal program. The full text of the program is in
Appendix A [24]. Here we explain some crucial details only. The entry point of
the program is the function Go defined as follows:

$ENTRY Go {e.time (e.x1) = <Loop (time e.time) (invalid I e.x1)(shared_clean)

(shared_dirty)(dirty)(exclusive)

>;

}

It has two arguments e.time and e.x1 which according to the Refal conven-
tions may take arbitrary Refal expressions as the values. The function will be
defined though only for e.time taking the sequence of the names of the EFSM
rules as the value (see definition of Loop and RandomAction functions below).
The length of a string (value of) e.x1 is a value of the variable invalid in the
initial configuration of EFSM decreased by 1. In general, we use the following
representation of the global state of the system by Refal data:

(e.time)

(invalid e.x1)(shared_clean e.x2)(shared_dirty e.x3)(dirty e.x4)(exclusive e.x5)

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

56



Here the value of e.time represents the sequence of remaining rules to be
executed, and the length of the value of each e.xi (i = 1, . . . 5) represents the
value of the corresponding variable of the EFSM model, which are given in the
unary system.

As to the function Go it takes two arguments and calls the function Loop. The
syntactical form of this call reflects the constraints on the initial configuration
of EFSM - invalid ≥ 1 and all other variables have the value 0.

The definition of the function Loop contains two sentences: one for quitting
the loop and calling the Test function, and another for making recursive call
of Loop with decremented value of the first argument and updated state of the
encoded EFSM. Update is done by the call to the RandomAction function. The
sentences in the definition of the RandomAction function correspond to the rules
of EFSM.

Since the application of the rules rh and wh1 do not change the global state
of the system and we intend to verify the safety property, we can safely omit
these rules from the Refal specification. Further, notice that the rules rm2, wm2
and wh5 are specified by several sentences in the RandomAction definition. This
is because they have more complex guards which can not be specified by a single
sentence.

Consider the following fragment of the RandomAction definition, specifying
the wh5 rule:

...

wh5A (invalid e.x1)(shared_clean I I e.x2)(shared_dirty e.x3)(dirty e.x4)

(exclusive e.x5) =

(invalid e.x1)(shared_clean e.x3 I e.x2)(shared_dirty I)(dirty e.x4)

(exclusive e.x5);

wh5B (invalid e.x1)(shared_clean I e.x2)(shared_dirty I e.x3)(dirty e.x4)

(exclusive e.x5) =

(inavlid e.x1)(shared_clean e.x3 I e.x2)(shared_dirty I)(dirty e.x4)

(exclusive e.x5);

wh5C (invalid e.x1)(shared_clean e.x2)(shared_dirty I I e.x3)(dirty e.x4)

(exclusive e.x5) =

(inavlid e.x1)(shared_clean I e.x3 e.x2)(shared_dirty I)(dirty e.x4)

(exclusive e.x5);

...

The left-hand side of the first shown sentence

wh5A...(shared_clean I I e.x2)...

can be matched with the argument of RandomAction if and only if this ar-
gument encodes the state with shared clean ≥ 2. In the same way, left-hand
sides of remaining two sentences correspond to the conditions shared clean ≥ 1,
shared dirty ≥ 1 and shared dirty ≥ 2, respectively. Then any state satisfying
the guard of the rule wh5, that is shared clean+shared dirty ≥ 2 would satisfy
at least one of the conditions expressed by the left-hand sides of the sentences

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

57



above. The right-hand sides of the sentences all express the same update of the
rule wh5 that is

shared clean′ = shared clean + shared dirty − 1, shared dirty′ = 1 .

The function Test (see Appendix A in [24] for the definition) performs the
correctness condition testing.

Taking all definitions together we get a Refal program which simulates ex-
ecution of the Xerox PARC Dragon protocol for k automata (= the length of
the value of the input parameter e.x1 plus 1) following the sequence of actions
presented by e.time and then tests the correctness condition.

5.3 Failed attempt to verify and search for the error

If we apply the supercompiler SCP4 to the program above we get a residual
program presented in Appendix B [24]. As we see its syntax does not allow
to conclude the correctness of the encoded protocol - both constants True and
False are presented in the right-hand sides of the sentences. The question we
address now is whether the program (an executable specification of the Dragon
protocol) is indeed, incorrect, or the program is correct and the supercompiler
failed to prove it (i.e. to remove all occurences of False).

To trace the origin of False constants in the residual program we modify the
Test function of the original program and index all False constants in its defi-
nition by the numbers of configurations in which they appear. For this variant,
after supercompilation the residual program contains only False1 and False3.

Now we focus on the analysis of occurences of False1 only. To this end we
simplify the definition of the Test function to just two sentences, the first and
the last sentences of the original Test definition. The result of supercompilation
for such a variant still contains the constant False.

For further analysis we consider the execution of the protocol for the small
fixed number of steps. For this purpose we first modify the definition of the
Go function and set e.time = s.t1 s.t2 (two steps execution). Supercompiler
returns in that case a program without False, indicating that there are no two
steps traces violating the correctness. Consider the case of 3 steps execution and
set e.time = s.t1 s.t2 s.t3. As the result of supercompilation we get a residual
program of the following form:

$ENTRY Go {

....

wm1 wm2C wh3 (s.153 e.104) = False

...

}

which immediately suggests a trace of the protocol execution violating the cor-
rectness condition. To test it we run original program with the start configuration

<Loop (time wm1 wm2C wh3)(invalid I I I)(shared clean)(shared dirty)(dirty)

(exclusive)

>

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

58



and get the result False. The protocol as specified above is indeed incorrect
despite the correctness statement given in [6].

5.4 Successful verification of the Xerox PARC Dragon protocol

Following the references given in [6, 9] we have found another (program) specifi-
cation of the parameterized Dragon protocol in terms of EFSM [5]. We present
here only the clauses where this specification is different from one given in [6]

(wm2) invalid ≥ 1, shared clean + shared dirty + exclusive + dirty ≥ 1 → invalid′ = invalid− 1,
exclusive′ = 0, dirty′ = 0, shared clean′ = shared dirty + dirty + exclusive + shared clean.

(wh1) dirty ≥ 1 → invalid′ = 1 + invalid, dirty′ = dirty − 1.

(wh2 shared clean ≥ 1 → invalid′ = 1 + invalid, shared clean′ = shared clean− 1.
(wh3) shared dirty ≥ 1 →, invalid′ = 1 + invalid, shared dirty′ = shared dirty − 1.
(wh4) exclusive ≥ 1 → invalid′ = 1 + invalid, exclusive′ = exclusive− 1.
(wh5) this clause is absent now.

The correctness condition for this version of the protocol remains the same.
We encoded this specification together with the correctness condition in a Refal
program. Result if its supercompilation can be found in the Appendix C [24].
The residual program does not contain the constant False and therefore the
correctness of the (program specifying the) Dragon protocol is proved.

As we argued in [21] the successful verification of safety properties via su-
percompilation can be seen as a proof by mutual induction and the process of
supercompilation as a proof search. Not going into detailed discussion and refer-
ring an interested reader to [21] for more details, we would like to illustrate here
the complexity of the proof involved. The figure 1 shows a proof diagram which
we derived manually from the proof of the correct version of the Dragon proto-
col via supercompilation. The vertices of the graph represent terms describing
parameterized configurations (sets of configurations) of the Refal program and
therefore, parameterized configurations of the encoded Dragon protocol. The
following properties are supported.

– Any possible configuration reachable during actual execution of the program
(protocol) belongs to a set of configurations represented by some vertex. In
that case we say that the configuration is covered by the vertex.

– Arcs in the graph represent one-step reachability between parameterised con-
figurations, that is if some configuration covered by a vertex a, then its suc-
cessor in the execution is covered by a vertex b such that a→ b (there is an
arc going from a to b).

– Vertices labelled by t1, t2, . . . represent sets of final configurations where exe-
cution of the program (development of the protocol) stops and the correctness
condition is successfully tested.

With every vertex one can also associate a correctness statement: every final
configuration reachable from any configuration covered by the vertex satisfies the

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

59



correctness condition. All vertices of the rectangular shape represent inductive
hypotheses. The hypotheses labelled by Ti were created by automatic gener-
alization of the inductive hypotheses encountered in the process of the proof
(or being given as the initial problem definition). Taking this point the proof
diagram represents the proof of all correctness hypotheses by simultaneous in-
duction. Statements associated with the vertices labelled by t1, t2, . . . form the
base of induction.

We notice also that although we have derived the proof diagram manually,
we do not see any problems in automation of this process.

6 Verification of the Client-Server Protocol

As the second case study we consider verification of the parameterized abstract
Client-Server protocol as specified in [10], again in terms of EFSM, but extended
in this case by the finite state control and boolean variables.

First, we translated a specification given in [10] into executable specification
+ testing function in Refal terms as shown in Appendix D [24]. To represent
integer variables we followed the same conventions as with the Dragon protocol.
The states of the finite state control and a (single) boolean variable of the EFSM
are represented in this case by terms of the form (Server . . .). For example,
(Server ServS No) indicates the ServS is being the state of the finite state
control and a boolean variable has a value No. As before the rules of the protocol
are encoded by sentences of the RandomAction definition, the initial condition
is encoded in the Go function definition and the Test function embodies the
correctness condition.

When we applied SCP4 for this specification we have got a small residual
program:

* InputFormat: <Go e.41>

$ENTRY Go {

(e.101) = True ;

reqS (e.101) = True ;

reqS nonex1 (e.101) = True ;

reqE1 (e.101) = True ;

reqE1 invS (e.101) = True ;

reqE1 invS nonex2 (e.101) = True ;

}

Formally, it does not contain the False constant and the verification seemed
successful and it was, in fact successful for the given executable specification.
But . . . it was immediately transparent that this residual program allows only
a few different finite executions of the protocol. That was in the contradiction
with the assumption that the protocol is designed to work indefinitely long.

That suggested a test for the original executable specification: to execute
it for the sequence of steps extending the cases presented in the residual pro-
gram. An attempt to execute the sequence reqS, nonex1, grantS resulted in the

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

60



T1,[1],F5

[2] t1

L4,[3],F12

[4]t2

L6***

T1*

T2,[5g],F32

[6]t3

L1,[7],F43

t4 [8]

L2,[9],F66

t510

L3,[11],F89

t612

L7,[19],F174

L6,[21],F185

t10 20

t13 22

L5,[13],F115

t7 14

31

32t12 T1*5

L6* L6** T1**

T2***

L1* L1** T2**

L1*** L1**** 17

t9 18

T2*9L2****L5**L1*5 L3* L2*L1*6 L2**

L4**T2*615L2*7 L5*4

t816

L2*5L2*6 T1*4

T2*429

t11 30

L4***T2*7

L2*8 L5*5

L1*7

L1*8 23 L7*

t14 24

L1*9 L1*10 L6**** L6*5

L3**

25

t15 26

L4*T2*5 27L2***

L5*

t16 28

L6*6 L6*7 T1***

Fig. 1. Proof diagram for the parameterised Xerox PARC Dragon protocol

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

61



halted execution with the Refal interpreter returning the message RECOGNITION

IMPOSSIBLE, meaning a call to the RandomAction function failed, that is an ar-
gument of the call could not be matched with any left-hand side of the sentences
in the definition of RandomAction. Simple analysis then has shown that the rea-
son for that was two typos4 made in the definition of RandomAction. To correct
the specification one needs to replace in the rule 9 the term (Server grantS s.bool)
with (Server GrantS s.bool) and in the rule 10 the term (Server grantE s.bool)
with (Server GrantE s.bool). After such a correction the Client-Server protocol
has been successfully verified [23].

7 Discussion and Further Work

Two case studies presented here highlighted the role of supercompilation it may
play both in proving the programs and disproving them by guided tests.

If the main proof procedure fails to prove the correctness the form of the
residual program may lead to the tests and the bug discovery. As the second
case study has demonstrated it may even lead to discovery of inadequacy of a
specification, revealing implicit assumptions which are violated.

In the case studies we used the supercompiler SCP4 interactively. An im-
portant further development would be to automate the test generation as far as
possible. The aim of using the supercompiler in this context would be to nar-
row the search space of potential tests. For this purpose, control of the folding
strategy, available in SCP4, can be used. To get a description of potential test
cases in the syntax of the residual program one may forbid folding applying to
n consecutive steps. Increasing parameter n would initiate a search for longer
potential test cases.

On a practical side, we have tested this approach on the incorrect specifica-
tion of the Xerox PARC Dragon protocol and, indeed, the test witnessing incor-
rectness was generated (without any assumption on the length of the trace!). It
is clear though that, in general, one can not avoid exponential blow up in the
search for incorrect traces of increasing length, so interactive mode may be a
viable choice here.

The class of the programs to which we have applied our verification and
testing method admittedly quite restricted. Likewise, the properties which can
be proved or disproved by the method (as described above) belong to the class
of safety properties. Another important direction for further work is to extend
the approach to wider classes of programs and properties.

Notice that the verification of the parameterized Xerox PARC Dragon pro-
tocol as well as of others cache coherence protocols has already been done by
using counting abstraction, constraint-based methods and symbolic model check-
ing e.g. in [7, 9]. The applicability of parameterized testing and supercompilation

4 Mea culpa!

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

62



scheme presented here potentially is much wider, but it remains to be convinc-
ingly demonstrated.

The applications of the discussed methods are restricted at the moment to
programs and correctness conditions expressed in the supercompiler’s input lan-
guage Refal. Yet another interesting development here would be to use the re-
markable features of supercompilation as a specializing procedure, capable in
some cases of eliminating a level of interpretation. If one would like to apply su-
percompilation based verification and testing methods to programs written in a
different language L one may proceed as follows. First, implement an interpreter
of L in Refal and then apply the verification procedure based on supercompila-
tion to the Refal program executing the interpreter on a particular L program to
be verified. We anticipate that, given enough effort in developing a suitable in-
terpreter, the supercompiler would be able to eliminate (to some extent, at least)
the overhead of interpretation, effectively reducing verification of L programs to
the verification of Refal programs.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena. Regular Model Checking
for LTL(MSO). In Proc. 16th International Conference on Computer Aided Verification (CAV),
volume 3114 of LNCS, pages 348–360. Springer, 2004.

2. P. A. Abdulla, B. Jonsson, A. Rezine, and M. Saksena. Proving Liveness by Backwards Reacha-
bility. In Proc. CONCUR, volume 4137 of LNCS, pages 95–109. Springer, 2006.

3. K.-T. Cheng and A.S. Krishnakumar, Automatic Generation of Functional Vectors Using the
Extended Finite State Machine Model. ACM Transactions on Design Automation of Electronic
Systems 1(1):57–79,1996

4. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.

5. G. Delzanno, Automatic Verification of Parameterized Synchronous Systems.
http://www.disi.unige.it/person/DelzannoG/protocol.html

6. G. Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols, 2000, 27pp,
available online at ftp://ftp.disi.unige.it/person/DelzannoG/papers/ccp.ps.gz

7. G. Delzanno. Automatic Verification of Parameterised Cache Coherence Protocols. Proc. of 13th
Int. Conference on Computer Aided Verification LNCS 1855, Springer Verlag, 2000, pp 53–68.

8. G. Delzanno. Verification of Consistency Protocols via Infinite-state Symbolic Model Checking,
A Case Study. In Proc. of FORTE/PSTV, 2000, pp 171-188

9. G. Delzanno. Contsraint-based Verification of Paremeterized Cache Coherence Protocols. Formal
Methods in System Design 23(3):257-301, 2003.

10. G. Delzanno and T. Bultan. Constraint-based Verification of Client-Server Protocols. In Proc.
the 7th International Conference on Principles and Practice of Constraint Programming, LNCS,
Vol. 2239, pp. 286-301, Springer-Verlag, 2001.

11. P. Dybier and H. P. Sander, A Functional Programming Approach to the Specification and
Verification of Concurrent Systems. Formal Aspects of Computing, 1:303–319

12. R. Glück and M. Leuschel, Abstraction-based partial deduction for solving inverse problems – a
transformational approach to software verification. In Proceedings of Systems Informatics, LNCS
1755, pp:93-100, Novosibirsk, Russia, 1999. Springer-Verlag.

13. G. W. Hamilton. Distilling Programs for Verification. In Proceedings of the International Con-
ference on Compiler Optimization Meets Compiler Verification, Braga, Portugal, March 2007. To
Appear in Electronic Notes in Theoretical Computer Science.

14. J. Handy. The Cache Memory Book. Academic Press, 1993.

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

63



15. M. Leuschel. On the Power of Homeomorphic Embedding for Online Termination. Proceeding of
the SAS’98, LNCS 1503, Springer-Verlag, 1998.

16. M. Leuschel, H. Lehmann, Solving coverability problems of Petri nets by partial deduction. In
Proc. 2nd Int. ACM SIGPLAN Conf. on Principles and Practice of Declarative Programming
(PPDP’2000), Montreal, Canada, pp 268-279, 2000.

17. M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and program
specialisation. In A. Bossi, editor, Logic-Based Program Synthesis and Transformation. Proceed-
ings of LOPSTR’99, LNCS 1817, pages 63-82, Venice, Italy, 2000.

18. A. Lisitsa, A. Nemytykh. Towards Verification via Supercompilation. In Proc. of COMPSAC
05, the 29th Annual International Computer Software and Applications Conference, Workshop
Papers and Fast Abstracts, pages 9-10, IEEE, 2005.

19. A. Lisitsa, A. Nemytykh: Verification of parameterized systems using supercompilation. A case
study, in Proc. of the Third Workshop on Applied Semantics (APPSEM05), M. Hofmann, H.W.
Loidl (Eds.) , Fraunchiemsee, Germany. Ludwig Maximillians Universitat Munchen. (2005), Ac-
cessible via: ftp://www.botik.ru/pub/local/scp/refal5/appsem_verification2005.ps

20. A. Lisitsa, A. Nemytykh, Verification as a Parameterized Testing (Experiments with the SCP4
Supercompiler). Programmirovanie. No.1 (2007) (In Russian), pp: 22-34. English translation in
J. Programming and Computer Software, Vol. 33, No.1 (2007), pp: 14–23.

21. A. Lisitsa, A. Nemytykh, Reachability Analisys in Verification via Supercompilation. In Proceed-
ings of the Satellite Workshops of DTL’2007 , TUCS General Publication, No.45, Part 2, June
2007, pp: 53-67.

22. A. Lisitsa, A. Nemytykh, A Note on Specialization of Interpreters. In Proceedings of The 2nd
International Symposium on Computer Science in Russia (CSR-2007), LNCS 4649, pp 237-248.

23. A. Lisitsa, A. Nemytykh, Experiments on verification via supercompilation. http://refal.

botik.ru/protocols/, 2007.
24. A. Lisitsa, A. Nemytykh, Appendices to the paper: Extracting bugs from the failed proofs in

verification via supercompilation. http://refal.botik.ru/protocols/TAP08_Appendices.zip,
2008.

25. A. A. Markov and N. M. Nagorny, The Theory of Algorithms, Kluwer Academic Publishers,
Dordrecht, (Translated from the Russian by M. Greendlinger), 1988.

26. A. Nemytykh: The Supercompiler SCP4: General Structure (extended abstract). In Proc. of the
Perspectives of System Informatics, LNCS, 2890 (2003) 162–170, Springer-Verlag.

27. A. Nemytykh: Playing on REFAL. In Proc. of the International Workshop on Program Under-
standing , (2003) 29–39, A.P. Ershov Institute of Informatics Systems, Syberian Branch of Russian
Academy of Sciences. Accessible via: ftp://www.botik.ru/pub/local/scp/refal5/nemytykh_

PU03.ps.gz

28. A. P. Nemytykh: The Supercompiler SCP4: General Structure (in English), Programmnye sistemy:
teoriya i prilozheniya, Vol. 1, pp.448-485. Moscow, Fizmatlit, 2004.
(ftp://ftp.botik.ru/pub/local/scp/refal5/GenStruct.ps.gz).

29. A. Nemytykh: The Supercompiler SCP4: General Structure. Moscow, URSS, 2007. (A book in
Russian).

30. A. P. Nemytykh, V. F. Turchin: The Supercompiler SCP4: sources, on-line demonstration, http:
//www.botik.ru/pub/local/scp/refal5/, (2000).

31. A. Roychoudhury, I.V. Ramakrishnan, Inductively Verifying Invariant Properties of Parameter-
ized Systems, Automated Software Engineering, 11, pp. 101–139, 2004.

32. M. H. Sørensen, R. Glück, An algorithm of generalization in positive supercompilation. In Logic
Programming: Proceedings of the 1995 International Symposium, pages 486–479. MIT Press, 1995.

33. V.F. Turchin, The concept of a supercompiler. ACM Transactions on Programming Languages
and Systems, 8:292–325, 1986.

34. V. F. Turchin: The use of metasystem transition in theorem proving and program optimization.
In Proc. the 7th Colloquium on Automata, Languages and Programming , LNCS, Vol. 85 (1980)
645–657, Springer-Verlag

35. V. F. Turchin: Metacomputation: Metasystem transition plus supercompilation LNCS, Vol. 1110,
pp.481-509 The Proc. of the PEPM’96. Springer-Verlag, 1996.

36. V. F. Turchin: Supercompilation: Techniques and results LNCS, Vol. 1181, pp.227-248 The Proc.
of Perspectives of System Informatics. Springer-Verlag, 1996.

Tests and Proofs: Papers Presented at the 2nd Intern. Conf.,

TAP 2008, Prato, Italy, April 2008

Faculty of Informatics, No. 5/2008

64



37. V. F. Turchin: Refal-5, Programming Guide and Reference Manual. Holyoke, Massachusetts.
(1989) New England Publishing Co. Electronic version: http://www.botik.ru/pub/local/scp/
refal5/, 2000).

38. V. F. Turchin, D. V. Turchin, A. P. Konyshev, A. P. Nemytykh: Refal-5: sources, executable
modules. http://www.botik.ru/pub/local/scp/refal5/, 2000.

A. Lisitsa, A. P. Nemytykh Extracting Bugs from the Failed Proofs in Verification via Supercompilation

65



Bisher erschienen  
 
Arbeitsberichte aus dem Fachbereich Informatik 
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte) 
 
Bernhard Beckert, Reiner Hähnle, Tests and Proofs: Papers Presented at the Second 
International Conference, TAP 2008, Prato, Italy, April 2008, Arbeitsberichte aus dem 
Fachbereich Informatik 5/2008  
 
Klaas Dellschaft, Steffen Staab, Unterstützung und Dokumentation kollaborativer Entwurfs- 
und Entscheidungsprozesse, Arbeitsberichte aus dem Fachbereich Informatik 4/2008 
 
Rüdiger Grimm: IT-Sicherheitsmodelle, Arbeitsberichte aus dem Fachbereich Informatik 
3/2008 
 
Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für 
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik 2/2008 
 
Markus Maron, Kevin Read, Michael Schulze: CAMPUS NEWS – Artificial Intelligence 
Methods Combined for an Intelligent Information Network, Arbeitsberichte aus dem 
Fachbereich Informatik 1/2008 
 
Lutz Priese,Frank Schmitt, Patrick Sturm, Haojun Wang: BMBF-Verbundprojekt 3D-RETISEG 
Abschlussbericht des Labors Bilderkennen der Universität Koblenz-Landau, Arbeitsberichte 
aus dem Fachbereich Informatik 26/2007 
 
Stephan Philippi, Alexander Pinl: Proceedings 14. Workshop 20.-21. September 2007 
Algorithmen und Werkzeuge für Petrinetze, Arbeitsberichte aus dem Fachbereich Informatik 
25/2007  
 
Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS – an Intelligent Bluetooth-
based Mobile Information Network, Arbeitsberichte aus dem Fachbereich Informatik 24/2007 
 
Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS - an Information Network for 
Pervasive Universities, Arbeitsberichte aus dem Fachbereich Informatik 23/2007 
 
Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version, 
Arbeitsberichte aus dem Fachbereich Informatik 22/2007 
 
Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularität als alternative Technologie- 
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007 
 
Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem 
Fachbereich Informatik 20/2007 
 
Rüdiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pähler, Ilka Uerz: SOA-Security, 
Arbeitsberichte aus dem Fachbereich Informatik 19/2007 
 
Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte 
aus dem Fachbereich Informatik 18/2007 
 
Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics, 
Arbeitsberichte aus dem Fachbereich Informatik 17/2007 

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models 
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007 

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte


Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im 
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007 

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent 
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus 
dem Fachbereich Informatik 14/2007 

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem 
Fachbereich Informatik, 13/2007 

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality, 
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007 

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems, 
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007 

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten, 
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007 

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte 
aus dem Fachbereich Informatik, 9/2007 

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced 
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007 

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung, 
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007 

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel 
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting, 
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007 

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich 
Informatik, 5/2007 

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to 
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus 
dem Fachbereich Informatik, 4/2007 

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich 
Informatik, 3/2007 

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für 
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007 

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007 

 
„Gelbe Reihe“  
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe) 
 
Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages. 
Extended Version, Fachberichte Informatik 3-2006 

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets, 
Fachberichte Informatik 2-2006 

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services, 
Fachberichte Informatik 1-2006  

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte 
Informatik 16-2005  

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' – 
Software Migration, Fachberichte Informatik 15-2005  

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/


Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed 
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005  

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving, 
Fachberichte Informatik 13-2005  

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions, 
Fachberichte Informatik 12-2005  

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and 
artificial intelligence, Fachberichte Informatik 11-2005 

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte 
Informatik 10-2005  

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies, 
Fachberichte Informatik 9-2005  

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering, 
Fachberichte Informatik 8-2005  

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on 
Text-Based Information Retrieval, Fachberichte Informatik 7-2005   

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte 
Informatik 6-2005  

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra, 
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League 
can benefit from each other, Fachberichte Informatik 5-2005  

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach, 
Fachberichte Informatik 4-2005  

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of 
Multiagent Team Behavior, Fachberichte Informatik 3-2005   

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their 
Applications in a Mobile Environment, Fachberichte Informatik 2-2005  

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –  
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005  

 
 

http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_inf
	Foliennummer 1

	Impressum
	report-5-2008
	Bisher erschienen
	Bisher erschienen 


