
Model Based Deduction for Database
Schema Reasoning

Peter Baumgartner, Ulrich Furbach, Margret
Groß-Hardt, Thomas Kleemann

5/2004

Fachberichte
INFORMATIK

Universität Koblenz-Landau
Institut für Informatik, Universitätsstr. 1, D-56070 Koblenz

E-mail: researchreports@uni-koblenz.de ,

WWW: http://www.uni-koblenz.de/fb4/

Model Based Deduction for Database Schema Reasoning

Peter Baumgartner1, Ulrich Furbach2, Margret Gross-Hardt2, and Thomas Kleemann2

1 MPI Informatik, D-66123 Saarbr¨ucken, Germany,baumgart@mpi-sb.mpg.de
2 Universität Koblenz-Landau, D-56070 Koblenz, Germany,

{uli|margret|tomkl }@uni-koblenz.de

Abstract. We aim to demonstrate that automated deduction techniques, in par-
ticular those following the model computation paradigm, are very well suited for
database schema/query reasoning. Specifically, we present an approach to com-
pute completed paths for database or XPath queries. The database schema and a
query are transformed to disjunctive logic programs with default negation, using
a description logic as an intermediate language. Our underlying deduction sys-
tem, KRHyper, then detects if a query is satisfiable or not. In case of a satisfiable
query, all completed paths – those that fulfill all given constraints – are returned
as part of the computed models.
The purpose of our approach is to dramatically reduce the workload on the query
processor. Without the path completion, a usual XML query processor would
search the database for solutions to the query.
In the paper we describe the transformation in detail and explain how to extract
the solution to the original task from the computed models.
We understand this paper as a first step, that covers a basic schema/query rea-
soning task by model-based deduction. Due to the underlying expressive logic
formalism we expect our approach to easily adapt to more sophisticated problem
settings, like type hierarchies as they evolve within the XML world.

1 Introduction

Automated theorem proving is offering numerous tools and methods to be used in other
areas of computer science. An extensive overview about the state of the art and its po-
tential for applications is given in [7]. Very often there are special purpose reasoning
procedures which are used to reason for different purposes like knowledge representa-
tion [16] or logic programming [10].

The most popular methods used for practical applications are resolution-based pro-
cedures or model checking algorithms. In this paper we want to demonstrate that there
is a high potential for model based procedures for database schema reasoning. Model
based deduction can be based very naturally on tableau calculi [13], and in particular on
the developments that started with theSATCHMOapproach [20] and that were refined
later and extended in the hyper tableau calculus [6].

We start with the idea of representing a (database) schema as a description logic
knowledge base. This idea as such is not new and has been put forward by [9] and
[8]. However, we found that the services usually available in description logic reason-
ers do not allow to express all constraints that were imposed by the schema in order
to solve the tasks we are looking at. Indeed, the work in [9] and [8] aims at different

purposes, where schema reasoning tasks can be reduced to satisfiability of description
logic knowledge bases. We are considering the tasks of testing and optimizing certain
forms of database queries as they arise in the XML world. To this end, a “pure” descrip-
tion logic approach was proposed before in [4]. In the present paper, the limitations of
that approach are overcome by a translation of a schema into a disjunctive logic pro-
gram. When given to the hyper tableau based theorem prover [24] then, the solutions
to the original task are encoded in the computed models. That is, instead of answering
a satisfiability question the model itself constitutes the solution. The usage of a model
generation theorem prover thus is motivated by the applications requirement to enumer-
ate models/answers rather than querying the existence of a model.

In the following section we briefly review the hyper tableau prover, and on this basis
we will describe its application in the successive sections.

2 Theorem Proving with Hyper Tableau

Features. The Hyper Tableau Calculus is a clause normal form tableau calculus [6],
which can be seen as a generalization of the SATCHMO-procedure [20]. Hyper tableau
have been used in various applications (for examples see [3, 5]), where two aspects
turned out to be of importance: The result of the theorem prover is a model (if the
specification is satisfiable) and this model can be seen as the result of the prover’s
“computation”; it can be used by the system, where the prover is embedded, for fur-
ther computation steps. The second aspect is concerned with non-monotonic negation.
Although an entire discipline, namely knowledge representation, is emphasizing the
necessity of non-monotonic constructs for knowledge representation, there are rarely
automated theorem proving systems which are dealing with such constructs.

The hyper tableau theorem proverKRHyperallows application tasks to be specified
by using first order logic — plus possibly non-monotonic constructs — in clausal form.
While KRHypercan be used straightforwardly to prove theorems, it also allows the
following features, which are on one hand essential for knowledge based applications,
but on the other hand usually not provided by first order theorem provers:

1. Queries which have the listing of predicate extensions as answer are supported.
2. Queries may also have the different extensions of predicates in alternative models

as answer.
3. Large sets of uniformly structured input facts are handled efficiently.
4. Arithmetic evaluation is supported.
5. Non-monotonic negation is supported.
6. The reasoning system can output proofs of derived facts.

More details about these features can be found in [24]. Also, we only note that with
a simple transformation of the given rule set,KRHyperis sound, complete and termi-
nating with respect to thepossible models[21] of a stratified disjunctive logic program
without function symbols (except constants).

A Small Example. Hyper tableau is a “bottom-up” method, which means that it gen-
erates instances of rule3 heads from facts that have been input or previously derived.
If a hyper tableau derivation terminates without having found a proof, the derived facts
form a representation of a model of the input clauses.

The following example illustrates how our hyper tableau calculus based system,
KRHyper, proceeds to generate models. Figure 1 shows four subsequent stages of a
derivation for the following input clauses4:

p(a)← (1)

q(x,y)∨ r(f (z))∨ r(x)← p(x) (2)

← q(x,x) (3)

s(x)← p(x), notr(x) (4)

*

p(a)

(III) (IV) (V)(II)(I)

s(a)

p(a)

r(f(z))q(a,y) r(a)

p(a)

r(f(z)) r(a)

p(a)

r(f(z)) r(a)

p(a)

r(a)

Fig. 1. Stages of aKRHyperderivation

KRHyperprovides stratified negation as failure. The set of input clauses is parti-
tioned intostrata, according to the predicates in their heads: if a clausec1 has a head
predicate appearing in the scope of the negation operator “not” in the body ofc2, then
c1 is in a lower stratum thanc2. In the example, we have two strata: the lower one
containing clauses (1), (2) and (3), the higher one clause (4).

As noted, a rule head may be a disjunction. In hyper tableau, disjunctions are han-
dled by exploring the alternative branches in a systematic way. This explains the tree
structure in Figure 1. Backtracking can be used to generate one model after the other.

Stage (I) shows the data structure maintained by the method, also calledhyper
tableau, after the input fact (1) has been processed. One can view the calculus as at-
tempting to construct the representation of a model, theactive branch, shown with bold
lines in the figure. At step (I), this model fragment contradicts for example with clause
(2): a model containingp(a) must also contain all instances ofq(a,y) or of r(f (z)) or

3 We use an implication-style notation for clauses throughout this paper: A clause is viewed as
rule Head← Body, whereHeadconsists of its positive literals, combined by “∨”, and Body
consists of its negative literals, combined by “,” (and). Both the head and the body may be
empty.

4 Here and below, the lettersx,y,z denote variables, whilea,b,c denote constants.

r(a). The model fragment is “repaired” by derivating consequences and attaching them
to the hyper tableau: The corresponding instance of clause (2) is attached to the hyper
tableau. Since it has a disjunctive head, the tableau splits into three branches. The first
branch is inspected and proved contradictory with clause (3). This state is shown in (II).

Computation now tracks back and works on the second branch. With the clauses
of the lower stratum, no further facts can be derived at this branch, which means that a
model for the stratum has been found, as shown in step (III). Computation then proceeds
with the next higher stratum:s(a) can be derived by clause (4). Since no further facts
can be derived, a model for the whole clause set has been found, represented by the
facts on the active branch:{p(a), r(f (z)),s(a)}, as shown in (IV).

If desired, the procedure can backtrack again and continue to find another model, as
shown in state (V). Another backtracking step then finally leads to the result, that there
is no further model.

We conclude by noting that theKRHypersystem implements the calculus by a com-
bination of semi-naive rule evaluation with backtracking over alternative disjuncts and
iterative deepening over a term weight bound. It extends the language of first order logic
by stratified negation as failure and built-ins for arithmetic.

3 Flexible Database Queries for XML Data

Querying databases requires that users know the structure of a database. In fact, they
have to know thedatabase schemain order to formulate valid queries. In the context
of complex structured data and large database schemas, knowing the complete schema
is not always possible. Querying data, therefore, may be a tedious task. This section
describes the application of theKRHyperSystem in order to enhance the flexibility of
database queries. In particular, we focus on XML databases and address the following
issues in querying XML databases:

– XML documents contain complex structured data, often rather nested. Users there-
fore have to navigate through these data.

– XML data usually is described by Document Type Definitions (DTDs) and more
recently, XML Schema is used. Different from DTDs, XML Schema offers in some
sense object oriented concepts as user defined types and aggregation as well as spe-
cialization relationships between them. During query processing and optimization
this schema knowledge may be used, e.g. in order to avoid evaluation of unsatisfi-
able queries.

– In an XML schema so calledsubstitution groupsdefine types that can be substi-
tuted for each other, comparable to union types in other (programming) languages,
though, with the difference, that types which are substitutes for each other have to
be related via specialization.

– Existing querying languages like XQuery [23] offer navigational expressions on the
document level in order to access parts of an XML document. These languages do
not cope with type expressions. Type expressions may be helpful in order to query
instances of somegeneraltypeT, resulting in instances of typeT as well as of all
subtypes forT.

Let us consider an example XML document representing a university with a library
and researchers working in the university. A library consists of books where each book
has a title, an author and an ISBN. Researchers have a name and an associated set
of publications e.g. articles, monographs or some general kind of publication without
further specialization.

An XML schema itself also is an XML document listing the complex types to-
gether with their elements referring to other (complex) types. Furthermore by means of
a so called restriction expression, it is possible to represent specialization relationships
between types. Instead of the linear, XML based description of an XML schema, we
use a more illustrative, graphical representation for the types and their relationship in a
schema. An XML Schema is represented by a schema graph, where nodes represent the
types and substitutiongroups of the schema and edges represent aggregation and spe-
cialization relationships between types. Starting from such a schema graph, we present
an approach that allows a user to query the data, even if only parts of a database schema
is known. Figure 2 shows an example schema graph.

UNIVERSITY RESEARCHER

LIBRARY

BOOKS

MONOGRAPH

PUBLICATIONS SG(PUBL)

BOOK

ARTICLE

PUBLICATION STRING

STRING

publication title

AUTHOR

author
name

proceeding

subject isbn

books

book

library

researcher

publications

art
icl

e

monograph

name

ROOT

university

single valued relationship

multi valued relationship

is- subconcept -of

Fig. 2. Example schema graph.

This schema shows types likeUNIVERSITY, PUBLICATION, AUTHOR etc. with their
elements referring to other types as well as specialization relationships between types.
For instance, the typeUNIVERSITY has an elementresearcher of typeRESEARCHER
and an elementlibrary of typeLIBRARY. Furthermore,PUBLICATION is a general type
with specializationsBOOK andARTICLE. There is one substitution groupSG(PUBL)
contained in this schema whose general type isPUBLICATION and potential substi-
tutes areARTICLE andMONOGRAPH, actually specializations ofPUBLICATION. In
the transformation given below, we will see that substitution groups are a means to
express a disjunction of disjoint concepts.

To keep the representation of schema graphs as well as the query processing simple,
we only consider (XML-)elementsdescribing complex data structures but do not cope

with the term of (XML)-attributes. Nevertheless, we will use both terms in order to
refer to properties of data items.

3.1 From XML Schema to Description Logics

An XML database is described by a XML Schema. The schema is represented by a
graph. The nodes of the graph are the complex type identifiers; relationships between el-
ements and their corresponding subelement types are represented by aggregation edges
and ”extension”-relationships, describing the generalization relationship between com-
plex types, are represented by so called is-a edges. XML Schema supports the modelling
of multiple complex types, that are extension of the same general complex type within
a substitution group, comparable to a union type in other languages.

We describe databases and schemas by means of graphs. In the following we assume
a possibly infinite setL of labels. Labels will be used as edge annotations in various
places.

Definition 1 (XML Schema). Let C be a set oftype namesand SG be a disjoint set
of substitution group identifiers. An XML schema(or schemafor short) is a graph
S = (C∪SG,Erel,∪Eisa∪ESG-in ∪ESG-out, r) where C and SG are the nodes, Erel, Eisa,
ESG-in, ESG-out are disjoint sets of edges (representing attributes/elements edges, inheri-
tance edges, incoming edges to SG nodes, outgoing edges from SG nodes, respectively),
and r∈C is therootof the schema. Every schema must satisfy the following properties:

1. (v,v) /∈ Erel∪Eisa∪ESG-in∪ESG-out, for any node v.
2. Each edge in Erel and each edge in ESG-out is labeled with an element fromL . All

other edges are not labeled.
3. (v,v′) ∈ ESG-in if and only if v′ ∈ SG (incoming edges to nodes in SG are precisely

those from ESG-in).
4. (v,v′) ∈ ESG-out if and only if v∈ SG (incoming edges to nodes in SG are precisely

those from ESG-in).

Schema can be translated in a straightforward way to description logics as follows5:

Definition 2 (Schema to Description Logic).Let S= (C∪SG,Erel,∪Eisa ∪ESG-in ∪
ESG-out, r) be a schema. TheTBox for S, T(S), is defined as the smallest set of inclusion
statements satisfying the following properties:

Translation of is-a links. If c∈C and{d | (c,d)∈Eisa}= {d1, . . . ,dn}, for some n≥ 1,
then T(S) contains the inclusion cv d1t·· ·tdn.

Translation of elements/attributes. If (c,d) ∈ Erel and (c,d) is labeled with l, then
T(S) contains the inclusion cv ∃ l .d.

Translation of substitution groups. If (c,v) ∈ ESG-in then T(S) contains the inclusion
cv v. If v∈ SG and{d | (v,d) ∈ ESG-out}= {d1, . . . ,dn}, for some n≥ 1, then T(S)
contains the inclusion vv d1t ·· · tdn and the inclusions di udj v ⊥, for all i, j
with 1≤ i, j ≤ n and i 6= j.

5 We use standard description logic notation, see [2] for an introduction.

This translation conforms to concept and role formations found even in basic descrip-
tion logic languages likeALC . Although the translation doesnot result in anALC
TBox (T(S) might contain several inclusion statements with the same concept at the left
hand side), it is easy to see that the result of the transformation can easily be brought to
anALC conforming TBox (possibly cyclic).

At this point we will not discuss how to employ description logic reasoners to solve
the tasks we are interested in. This discussion will be postponed after our approach
based on model computation has been described.

3.2 From Description Logics to Model Computation

The following translation is the standard relational translation from description logics
to predicate logic. For our purpose, it is enough to work in a restricted setting, where
all inclusions in a TBox are of a particular form, which is obtained as the result of the
transformation in Definition 2.

Definition 3 (Description Logic to Rules – Basic Version).Let S be a schema. The
rules forS, R(S), is defined as the smallest set of rules satisfying the following proper-
ties:

1. if cv c1t·· ·tcn ∈ T(S) then R(S) contains the rule c1(x)∨·· ·∨cn(x)← c(x)
2. if c v ∃ l .d ∈ T(S) then R(S) contains the rules l(x, fc,l ,d(x)) ← c(x) and

d(fc,l ,d(x))← c(x). (fc,l ,d is a unary function symbol whose name contains c, l
and d, as indicated.)

3. if cudv⊥∈ T(S) then R(S) contains the rulefalse← c(x),d(x).

Using this transformation, simple graph reachability problems can be reduced easily
to model computation problems. Speaking in terms of the schema graph, to compute
a path, say, from a nodec to a noded in a schemaS, it suffices to add toR(S) the
fact c(a)← (for some constanta) and the rulesfound← d(x) and false←not found,
wherefound is a predicate symbol not occuring inR(S). Each model of the thus obtained
program corresponds to exactly one path fromc to d in S. However, this approach works
only in a satisfactory way if the schema does not contain any circle.

Example 1 (Cycle).Consider the following TBox, which can be obtained by translating
some schemaScontaining a circle.

cv ∃ l .d (5)

dv ∃k.c (6)

cv ∃m.e (7)

Its translation to rules gives the following program:

l(x, fc,l ,d(x))← c(x) d(fc,l ,d(x))← c(x) (8)

k(x, fd,k,c(x))← d(x) c(fd,k,c(x))← d(x) (9)

m(x, fc,m,e(x))← c(x) e(fc,m,e(x))← c(x) (10)

Now, any Herbrand model as computed by bottom-up procedures will be infinite and
containsc(a), c(fd,k,c(fc,l ,d(a))), c(fd,k,c(fc,l ,d(fd,k,c(fc,l ,d(a))))) and so on. Therefore,
KRHyperand related procedures will not terminate.

3.3 Blocking by Transformation

In this section we give an improved transformation in order to guarantee termination of
the model computation. This will be achieved by a “loop check” similar to the blocking
technique known from the description logic literature. The idea is to re-use an individual
already known to belong to a certain concept instead of adding a new individual to it in
order to satisfy an existentially quantified role constraint. In the example, the individual
a can be re-used instead offd,k,c(fc,l ,d(a)) in order to putfc,l ,d(a) into thek-relation
to some individual belonging toc. This re-use technique will be described now. It will
guarantee the termination of our reasoning algorithm.

Definition 4 (Description Logic to Rules – Improved Version).Let S be a schema.
The rules forS, R(S), is defined as the smallest set of rules satisfying the following
properties:

1. if cv c1t·· ·tcn ∈ T(S) then R(S) contains the rule c1(x)∨·· ·∨cn(x)← c(x)
2. R(S) contains the factequal(x,x)← .
3. if cv ∃ l .d ∈ T(S) then R(S) contains the following rules:

newc,l ,d(x)∨oldc,l ,d(x)← c(x) (1)

false← newc,l ,d(x),oldc,l ,d(x) (2)

l(x, fc,l ,d(x))← newc,l ,d(x) (3)

d(fc,l ,d(x))← newc,l ,d(x) (4)

l(x,z)← oldc,l ,d(x),c(y), l(y,z),d(z) (5)

false← oldc,l ,d(x),notsomec,l ,d (6)

somec,l ,d← c(x), l(x,y),d(y) (7)

false← newc,l ,d(x),newc,l ,d(y),
notequal(x,y)

(8)

4. if cudv⊥∈ T(S) then R(S) contains the rulefalse← c(x),d(x).

Some comments are due. The difference to the previous version is the translation of
inclusions of the formcv ∃ l .d. In order to explain it, suppose that the conceptc is
populated with some individual, say,a. That is, when constructing a model,c(a) already
holds true. Now, the program above distinguishes two complementary cases to satisfy
the constraint∃ l .d for a: either a newl -connection is made betweena and some new
individual ind, or an existing (“old”)l -connection between some individual fromc and
from d is re-used. That exactly one of these cases applies is guaranteed by the rules (1)
and (2). The rules (3) and (4) are responsible to establish a new connection, while the
rule (5) is responsible to re-use an existing connection. To achieve the desired effect,
some more constraints are needed: as said, re-using an existing connection is realized by
applying the rule (5). It establishes the connectionl(x,z), wherex stands for the object
the connection is to be established from (a in the example), andzstands for the re-used
object fromd. However, there is no guarantee per se that the rule’s subgoalsc(y), l(y,z)
andd(z) are satisfied. This, however, is achieved by the rules (6) and (7): whenever the
program choses to re-use an old connection, i.e. to build a model containing this choice,

by (6) and (7) this can succeed only if the mentioned subgoals are satisfiable. Finally,
the rule (8) acts as a “loop check”: with it, it is impossible that between individuals
belonging to the conceptsc andd more than one newl -connection is made. Only new
l -connections cause insertion of more complex atoms6 and thus are the only source for
non-termination. With the rule (8) there is a finite bound on the complexity then for a
given program.

The program above is intended to be run by a bottom-up model computation pro-
cedure likeKRHyper(Section 2). Together with some more rules and facts obtained by
further transformation steps (see Section 3.4) this yields an algorithm that is similar to
usual tableau algorithms developed for description logics. On the one side, our transla-
tion and the reasoning tasks to be solved do not quite match any existing of those algo-
rithms. This is because of the use of nonmonotonic negation to filter out nonintended
models (see Section 3.4). Another difficulty we encountered with existing systems is
their inability to actually output the models computed. From our application point of
view this is problematic, as the answer to the tasks to be solvedis the model (see again
Section 3.4).

On the other side, it suffices for our purpose to work with TBoxes that are quite
simple and do not involve constructs that are notoriously difficult to handle (like the
combination of inverse roles, transitive roles and number restrictions). This allows us
to use the above rather simple “loop checking” technique, which is inspired by the
blocking technique developed for an ABox/TBox reasoner in [15]. We are going to
explain the difference now.

The mentioned blocking technique is realized within the completion ruleR∃C in
[15]. As in our approach, a new individualfc,l ,d(a) and two assertions about that indi-
vidual l(x, fc,l ,d(a)) andd(fc,l ,d(a)) may be introduced in the completion of an ABox.
The completion is restricted to cases where all three conditions hold:

1. (∃ l .d)(a) is already contained in the ABox.
2. if a is a new individual then it is not blocked by an already introduced new indi-

vidualc. By definition,a is blocked byc if c is introduced prior toa and the set of
concepts that includec is a superset of the concepts that includea.

3. there is nob such thatl(a,b) andd(b) are contained in the current completion of
the ABox. This gives priority to the re-use of an existingl -link over a new link.

Basically the same restriction is encoded in our translation. It allows to re-use the same
ideas for the correctness proof of the blocking technique. There are two differences,
however: first, we allow old individuals to act as blocking individuals. This simplifies
the transformation somewhat and still works in our case, where we don’t have transitive
roles. Second, re-using an existing link because of a blocking situation is only implicit
in the model construction in [15]. In our transformation this re-use made explicit by
means of the rule (5). While this does not make a difference concerning satisfiability,
it makes a difference regarding the model computed. Lacking this explicit re-use the
computed models would in general not readily provide an answer to the tasks to be
solved.

6 Complexity being measured as the tree depth of the atoms.

3.4 Querying the Data

Existing query languages use path queries, that navigate along the structures of the
XML data. For instance, in order to access the name of all researchers of a university in
XPath [22] we use/university/researchers/researcher/name . Path queries usually
allow some form of “abbreviation”. For instance, with//researcher/name we address
all descendants of the “root” that areresearcher-elements and navigate to their names.
However, because path queries work directly on the XML data and not on the schema,
it is not possible to query those elements from a data source, that belong to the same
type or concept. In particular, in order to ask e.g. for all kinds of publications, we would
have to construct the union of path queries navigating to publication, book, article and
monograph, explicitly.

This problem has been addressed in [14] where concepts or type expressions, re-
spectively, have been added to the query language. Querying instances of types or con-
cepts basically is well known in object oriented databases. Furthermore, path expres-
sions allow to navigate through the nested structure of the data. We assume a syntax
similar to that applied in object oriented databases [19]. We aim at a query language
that combines schema expressions as used in object oriented query languages with a
flexible navigation mechanism as given by “abbreviated” path expressions as e.g. pro-
vided by XPath.

Let A denote a set of attribute names.

Definition 5 (Query Syntax). A path term is an expression of the form c[x] op1
a1[x1] . . . opm am[xm], where m≥ 0, c is a type name, a substitution group identifier
(cf. Def. 1) or the symbol>, opi ∈ {. , !}, ai ∈ A, and x,xi , for i = 1, . . . ,m are variables.

A conjunctive query expressionis a conjunction of path terms p1∧ . . .∧ pn, where
n≥ 1. A disjunctive query expressionis a disjunction of conjunctive query expressions
e1∨ . . .∨en, where n≥ 1.

By simply aquery expressionwe mean a disjunctive query expression, which includes
the case of a conjunctive query expression as a disjunction with one element.

A path term is an expression that starts in a concept and navigates through a schema
by a sequence of attributes. Variables are used to “hold” the spots during this navigation.
At the instance level, a path term describes a set of paths in a data source. The result
of a path term basically is a relationship, where all variables occuring in a path term
are bound to elements in the XML document. Actually, there are two possibilities to
traverse a schema. Firstly, by explicit navigation that specifies a path step by step. We
use the “!” operator for this kind of navigation. Secondly, a path term may contain only
some attributes occuring on one or several paths in a schema; then the “.” operator is
used.

For instance,BOOK[b]!title[t] describes all instancesb of typeBOOK, with a title
t as subelement. The result, basically, is a binary relation containing values forb and
t. Compared to an XPath-expression, the “!” operator matches “/” and the “.” opera-
tor can be compared to “//”. Different from an XPath expression, in our query syntax
variables can be specified and type expressions are possible. If a user does not want to
specify an explicit type, the most general type> can be taken. As will be shown below
(see Section 3.4), using type expressions in a query allows a user to query for different

elements described by the same general type in one simple expression. For instance,
BOOK[b]!title[t] retrieves allBOOK elements with their titles as well as allMONO-
GRAPH elements, because of the underlying specialization/subsumption relationship.

Furthermore, using type expressions in a query provide a query processor with a
possibility to validate purely by means of the schema if a query is satisfiable. Consider
another query:

PUBLICATION[p].isbn[i]∧>[p].proceedings[x]

This query asks for all instancesp of PUBLICATION with their isbn and theirproceed-
ings. Actually, there are no such instances. This fact can be established automatically,
as will be shown in the next section. This means it is useless to try this query on any
concrete database satisfying the schema, as the result will be empty anyway.

Translating Queries to Rules. The translation of a path termp of the formc[x] op1
a1[x1] · · · opm am[xm], as introduced above, is the following list of atomstr(p):

c(x),
trsel(x, op1 a1[x1]),
trsel(x1, op2 a2[x2]), . . . , trsel(xm−1, opm am[xm]) ,

where

trsel(x, op a[y]) =

a(x,y) if op= !

role filler ref trans(x,z), a(z,y) if op= . ,

wherez is a fresh variable

The purpose oftr(p) is to translate the path termp into a sequence of subgoals that
correspond to traversing the schema as prescribed byp and thereby assigning values to
the variables mentioned inp. Notice the translation distinguishes between the operators
“ .” and “!”. The former stands for the presence of an attribute immediately at the current
point of the traversal and thus translates into a corresponding role filler subgoal. The
latter is similar, but it allows to follow an arbitrary number of attributes first, by means
of therole filler ref trans relation.

(1) The translation of a conjunctive query expressionp1 ∧ . . . ∧ pn, where n ≥ 1
and eachpi (for i = 1, . . . ,n) is of the form just mentioned and written aspi =
ci [xi].ai

1[x
i
1].a

i
mi

[xi
mi

] consists of the following rules:

solution path(x1,(x1
m1

, . . . ,xn
mn

)← role filler ref trans(init,x1),
tr(p1), . . . ,tr(pn)

Observe that the selectorx1 mentioned in the first path termp1, is treated in a special
way. Its typec1 is treated as the “start type”, and a path from the root to it is computed
in the first argument of thesolution path predicate.

The translation of a disjunctive conjunctive query expressione1 ∨ . . .∨ en is the
union of the translation of eache1, for i = 1, . . . ,n.

(2) The following rules constrain the admissible models to those that contain at least
one “solution path”:

false← notsome solution path

some solution path← solution path(x,y)

(3) LetErel be a set of attribute names as mentioned in Definition 1. The setErel is reified
by the set of rules

T(Erel) = {role filler(x,y)← l(x,y) | l is the label of some attribute inErel}
The reflexive-transitive closure ofT(Erel) is obtained as follows:

role filler ref trans(x,x)←
role filler ref trans(x,z)← role filler(x,y),

role filler ref trans(y,z)

Now letS= (C∪SG,Erel,∪Eisa∪ESG-in∪ESG-out, r) be a schema as in Definition 1 and
q a conjunctive query expression. Thetransformation of S and qconsists of the union
of R(S) of Definition 4, the result of the transformation step (1) applied toq, the rules
from (2), the rules from (3), includingT(Erel), and the facts

>(x)← root(init)←

Examples. The query expressionBOOK[b]!title[t] from above translates into the fol-
lowing program:

>(x)← (1)

root(init)← (2)

solution path(b, t)← role filler ref trans(init,b),
BOOK(b), role filler ref trans(b,z), title(z, t)

(3)

false← notsome solution path (4)

some solution path← solution path(x,y) (5)

role filler ref trans(x,x)← (6)

role filler ref trans(x,z)← role filler(x,y),
role filler ref trans(y,z)

(7)

role filler(x,y)← university(x,y) (8)

...
... (9)

role filler(x,y)← isbn(x,y) (10)

Notice the rule (3) is the translation of the given (single conjunct) query expression
according to the scheme (1) above. The rules starting from (6) stem from the translation
of the schema graph in Figure 2 according to the scheme (3).

Now, suppose that this rule set is combined with the translation of the schema graph
in Figure 2 according to Definitions 2 and 3 (or Definition 4 instead). The unique model
contains

solution path(fBOOKS,books,BOOK(fLIBRARY,book,BOOKS(
fUNIVERSITY,library,LIBRARY(fROOT,university,UNIVERSITY(init)))),
fPUBLICATION,title,STRING(fBOOKS,books,BOOK(fLIBRARY,book,BOOKS(

fUNIVERSITY,library,LIBRARY(fROOT,university,UNIVERSITY(init))))))

Observe that the path from theROOT concept to theBOOK concept is coded in the
names of the Skolem function symbols in the first argument ofsolution path. This path
is extended towards a path to thetitle attribute in the second argument; this extension
encodes, in terms of the schema graph, moving from theBOOK type to its supertype
PUBLICATION and then moving to thetitle attribute. We note that the query expression
BOOK[b].title[t] would have given the same result.

As a second example considerPUBLICATION[p].isbn[i] ∧ >[p].proceedings[x]
from above. Its translation according to scheme (1) is

solution path(p,(i,x))← role filler ref trans(init, p),
PUBLICATION(p), isbn(p, i),
>(p),proceedings(p,x),

. (3)

The rest of the transformation is the same as in the previous examples and is omitted.
This time, thesolution path relation is empty, as the body of rule (3) cannot be satis-
fied. But then, with rules (4) and (5) this rule set is unsatisfiable. This is the expected
result, because, as mentioned above, the query expression is unsatisfiable (in terms of
the schema graph).

Both examples run within milliseconds on theKRHypersystem.
To sum up, our model based approach detects if a (XPath) query is satisfiable or

not. In case of a satisfiable query, a fully completed path – one that fulfills all given
constraints – is returned as part of the model. The purpose of this approach is to dra-
matically reduce the workload on the query processor. Without the path completion, a
usual XML query processor would search the database for solutions to the query.

Beyond these results there is an additional benefit of the model based approach.
In case of a query that allows for multiple paths through the schema to satisfy it, the
enumeration of models provides an enumeration of these paths. Because all models are
unique, no path will be computed twice. Due to the “loop check” implemented in the
generated set of rules and the minimality of all models all solution paths will be acyclic.
Because there is only a finite number of acyclic path in a finite schema, the number of
enumerated models will be finite as well.

4 Conclusion

In this paper we aimed to demonstrate that automated deduction techniques, in partic-
ular those following the model computation paradigm, are very well suited for knowl-
edge representation purposes. We showed how a XML schema graph can be easily rep-
resented by a simple description logic. This representation was then transformed into

the predicate logic language of the first order theorem proverKRHyper. Guaranteeing
termination by a blocking technique is part of this transformation. Based on this log-
ical representation of a schema graph, we used model computation capabilities of the
KRHypersystem to compute XML path queries, which are formulated in a much more
flexible query language.

An obvious question concerns the correctness of our approach, i.e. termination,
soundness and completeness of the combination ofKRHyper and the transformed
database schema and query. While termination has been argued for in Section 3.3, it
is hardly possible to establish the other two properties: there is no formal semantics of
XML path queries in the literature.

Our approach is leaving the mainstream of knowledge representation research,
which currently has its focus on the development of description logic (DL) systems. We
want to point out that we consider the DL direction of research extremely successful: it
led to a deep insight into computational properties of decidable subclasses of first order
reasoning; it made clear some interesting links to non-classical logics, and, moreover,
DL systems are nowadays outperforming most modal logic theorem provers. Despite
these successful developments we find two reasons which motivate our approach to use
a first order theorem prover for knowledge representation purposes instead of dedicated
description logic systems.

First, even the key researchers in the field of description logics are stating some
severe deficiencies of their systems (e.g. [12]): research into description logics focused
on algorithms for investigating properties of the terminologies, and it is clear that for
realistic applications the query language of description logic systems is not powerful
enough. Only recently has the community investigated the extension of description logic
systems towards ABox and query answering, which is not trivial [18, 17].

Second, the most advanced systems are essentially confined to classical semantics
and do not offer language constructs for non-monotonic features like default negation.
Although there are some results on extending DL languages with nonmonotonic fea-
tures [1, 11], it seems that this direction of research is vastly unexplored. Indeed, as our
investigations demonstrate, there are applications for description logics where model
computation and default negation is an issue. In a wider context, it can be speculated
thatSemantic Webapplications would profit from knowledge representation languages
having these features.

We understand this paper as a first step, that covers a basic schema/query reasoning
task by model-based deduction. Due to the underlying expressive logic formalism we
expect our approach to easily adapt to more sophisticated problem settings, like type
hierarchies as they evolve within the XML world. One big advantage of such a declar-
ative approach over, say, explicitly programmed algorithms is the possibility to easily
add further constraints. We intend to explore this potential in future work.

References

1. F. Baader and B. Hollunder. Embedding defaults into terminological knowledge represen-
tation formalisms. In B. Nebel, C. Rich, and W. Swartout, editors,KR’92. Principles of
Knowledge Representation and Reasoning: Proc. of the Third Int. Conf., pages 306–317,
San Mateo, California, 1992. Morgan Kaufmann.

2. F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P. Patel-Schneider, editors,Description Logic Handbook, pages 47–100.
Cambridge University Press, 2002.

3. P. Baumgartner, P. Fr¨ohlich, U. Furbach, and W. Nejdl. Semantically Guided Theorem Prov-
ing for Diagnosis Applications. In M. E. Pollack, editor,15th Int. Joint Conf. on Artificial
Intelligence (IJCAI 97), pages 460–465, Nagoya, 1997. Morgan Kaufmann.

4. P. Baumgartner, U. Furbach, M. Gross-Hardt, and T. Kleemann. Optimizing the Evaluation
of XPath using Description Logics. InProc. INAP2004, 15th Int. Conf. on Applications of
Declarative Programming and Knowledge Management, Potsdam, 2004.

5. P. Baumgartner, U. Furbach, M. Gross-Hardt, and A. Sinner.’Living Book’ :-
’Deduction’, ’Slicing’, ’Interaction’. – system description. In F. Baader,
editor,CADE-19 – The 19th Int. Conf. on Automated Deduction, LNAI. Springer, 2003.

6. P. Baumgartner, U. Furbach, and I. Niemel¨a. Hyper Tableaux. InProc. JELIA 96, number
1126 in LNAI. European Workshop on Logic in AI, Springer, 1996.

7. W. Bibel and P. H. Schmitt, editors.Automated Deduction. A basis for applications. Kluwer
Academic Publishers, 1998.

8. D. Calvanese, G. D. Giacomo, and M. Lenzerini. Answering queries using views in descrip-
tion logics. InProc. DL’99, Description Logic Workshop, 1999.

9. D. Calvanese, G. D. Giacomo, and M. Lenzerini. Representing and reasoning on XML
documents: a description logic approach.J. of Logic and Computation, pages 295–318,
1999.

10. J. Dix, U. Furbach, and I. Niemel¨a. Nonmonotonic Reasoning: Towards Efficient Calculi
and Implementations. In A. Voronkov and A. Robinson, editors,Handbook of Automated
Reasoning, pages 1121–1234. Elsevier-Science-Press, 2001.

11. F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge and negation
as failure.ACM Trans. on Computational Logic, 3(2):177–225, 2002.

12. D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in
a nutshell. InProc. of the European Knowledge Acquisition Conf. (EKAW-2000), Lecture
Notes In Artificial Intelligence. Springer-Verlag, 2000.

13. U. Furbach. Automated deduction. In W. Bibel and P. Schmitt, editors,Automated De-
duction. A Basis for Applications, volume I: Foundations. Calculi and Refinements. Kluwer
Academic Publishers, 1998.

14. M. Gross-Hardt. Querying concepts — an approach to retrieve xml data by means of their
data types. In17. WLP - Workshop Logische Programmierung, Technical Report. Technische
Universität Dresden, 2002.

15. V. Haarslev and R. M¨oller. Expressive ABox Reasoning with Number Restrictions, Role
Hierarchies, and Transitively Closed Roles. InKR2000: Principles of Knowledge Represen-
tation and Reasoning, pages 273–284. Morgan Kaufmann, 2000.

16. V. Haarslev and R. M¨oller. RACER system description.Lecture Notes in Computer Science,
2083:701, 2001.

17. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logic
SHIQ. In D. MacAllester, editor,Proc. of the 17th Int. Conf. on Automated Deduction
(CADE-17), Germany, 2000. Springer Verlag.

18. I. Horrocks and S. Tessaris. A conjunctive query language for description logic aboxes.
In AAAI’2000, Proc. 17th (U.S.) National Conf. on Artificial Intelligence, pages 399–404.
AAAI Press/The MIT Press, 2000.

19. M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. InSIGMOD, 1992.
20. R. Manthey and F. Bry. SATCHMO: a theorem prover implemented in Prolog. In E. Lusk

and R. Overbeek, editors,Proc. of the 9th Conf. on Automated Deduction, Argonne, Illinois,
May 1988, volume 310 ofLNCS, pages 415–434. Springer, 1988.

21. C. Sakama. Possible Model Semantics for Disjunctive Databases. In W. Kim, J.-M. Nicholas,
and S. Nishio, editors,Proc. First Int. Conf. on Deductive and Object-Oriented Databases
(DOOD-89), pages 337–351. Elsevier Science Publishers B.V. (North–Holland) Amsterdam,
1990.

22. W3C. XPath specification. http://www.w3.org/TR/xpath, 1999.
23. W3C. XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/, 2001.
24. C. Wernhard. System Description: KRHyper. Fachberichte Informatik 14–2003, Universit¨at

Koblenz-Landau, Institut f¨ur Informatik, 2003.

Available Research Reports (since 1999):

2004

5/2004 Peter Baumgartner, Ulrich Furbach, Margret
Groß-Hardt, Thomas Kleemann.Model Based
Deduction for Database Schema Reasoning.

4/2004 Lutz Priese.A Note on Recognizable Sets of
Unranked and Unordered Trees.

3/2004 Lutz Priese.Petri Net DAG Languages and
Regular Tree Languages with Synchronization.

2/2004 Ulrich Furbach, Margret Groß-Hardt, Bernd
Thomas, Tobias Weller, Alexander Wolf.Issues
Management: Erkennen und Beherrschen von
kommunikativen Risiken und Chancen.

1/2004 Andreas Winter, Carlo Simon.Exchanging
Business Process Models with GXL.

2003

18/2003 Kurt Lautenbach.Duality of Marked
Place/Transition Nets.

17/2003 Frieder Stolzenburg, Jan Murray, Karsten
Sturm.Multiagent Matching Algorithms With
and Without Coach.

16/2003 Peter Baumgartner, Paul A. Cairns, Michael
Kohlhase, Erica Melis (Eds.).Knowledge
Representation and Automated Reasoning for
E-Learning Systems.

15/2003 Peter Baumgartner, Ulrich Furbach, Margret
Gross-Hardt, Thomas Kleemann, Christoph
Wernhard.KRHyper Inside — Model Based
Deduction in Applications.

14/2003 Christoph Wernhard.System Description:
KRHyper.

13/2003 Peter Baumgartner, Ulrich Furbach, Margret
Gross-Hardt, Alex Sinner.’Living Book’ :-
’Deduction’, ’Slicing’, ’Interaction’..

12/2003 Heni Ben Amor, Oliver Obst, Jan Murray.
Fast, Neat and Under Control: Inverse Steering
Behaviors for Physical Autonomous Agents.

11/2003 Gerd Beuster, Thomas Kleemann, Bernd
Thomas.MIA - A Multi-Agent Location Based
Information Systems for Mobile Users in 3G
Networks.

10/2003 Gerd Beuster, Ulrich Furbach, Margret
Groß-Hardt, Bernd Thomas.Automatic
Classification for the Identification of
Relationships in a Metadata Repository.

9/2003 Nicholas Kushmerick, Bernd Thomas.
Adaptive information extraction: Core
technologies for information agents.

8/2003 Bernd Thomas.Bottom-Up Learning of Logic
Programs for Information Extraction from
Hypertext Documents.

7/2003 Ulrich Furbach.AI - A Multiple Book
Review.

6/2003 Peter Baumgartner, Ulrich Furbach, Margret
Groß-Hardt.Living Books.

5/2003 Oliver Obst.Using Model-Based Diagnosis to
Build Hypotheses about Spatial Environments.

4/2003 Daniel Lohmann, J̈urgen Ebert.A
Generalization of the Hyperspace Approach
Using Meta-Models.

3/2003 Marco Kögler, Oliver Obst.Simulation
League: The Next Generation.

2/2003 Peter Baumgartner, Margret Groß-Hardt, Alex
Sinner.Living Book – Deduction, Slicing and
Interaction.

1/2003 Peter Baumgartner, Cesare Tinelli.The Model
Evolution Calculus.

2002

12/2002 Kurt Lautenbach.Logical Reasoning and
Petri Nets.

11/2002 Margret Groß-Hardt.Processing of Concept
Based Queries for XML Data.

10/2002 Hanno Binder, J́erôme Diebold, Tobias
Feldmann, Andreas Kern, David Polock,
Dennis Reif, Stephan Schmidt, Frank Schmitt,
Dieter Zöbel.Fahrassistenzsystem zur
Unterstützung beim R¨uckwärtsfahren mit
einachsigen Gespannen.

9/2002 Jürgen Ebert, Bernt Kullbach, Franz Lehner.
4. Workshop Software Reengineering (Bad
Honnef, 29./30. April 2002).

8/2002 Richard C. Holt, Andreas Winter, Jingwei Wu.
Towards a Common Query Language for
Reverse Engineering.

7/2002 Jürgen Ebert, Bernt Kullbach, Volker Riediger,
Andreas Winter.GUPRO – Generic
Understanding of Programs, An Overview.

6/2002 Margret Groß-Hardt.Concept based querying
of semistructured data.

5/2002 Anna Simon, Marianne Valerius.User
Requirements – Lessons Learned from a
Computer Science Course.

4/2002 Frieder Stolzenburg, Oliver Obst, Jan Murray.
Qualitative Velocity and Ball Interception.

3/2002 Peter Baumgartner.A First-Order Logic
Davis-Putnam-Logemann-Loveland Procedure.

2/2002 Peter Baumgartner, Ulrich Furbach.
Automated Deduction Techniques for the
Management of Personalized Documents.

1/2002 Jürgen Ebert, Bernt Kullbach, Franz Lehner.
3. Workshop Software Reengineering (Bad
Honnef, 10./11. Mai 2001).

2001

13/2001 Annette Pook.Schlussbericht “FUN -
Funkunterrichtsnetzwerk”.

12/2001 Toshiaki Arai, Frieder Stolzenburg.
Multiagent Systems Specification by UML
Statecharts Aiming at Intelligent
Manufacturing.

11/2001 Kurt Lautenbach.Reproducibility of the
Empty Marking.

10/2001 Jan Murray.Specifying Agents with UML in
Robotic Soccer.

9/2001 Andreas Winter.Exchanging Graphs with
GXL.

8/2001 Marianne Valerius, Anna Simon.Slicing Book
Technology — eine neue Technik f¨ur eine neue
Lehre?.

7/2001 Bernt Kullbach, Volker Riediger.Folding: An
Approach to Enable Program Understanding of
Preprocessed Languages.

6/2001 Frieder Stolzenburg.From the Specification of
Multiagent Systems by Statecharts to their
Formal Analysis by Model Checking.

5/2001 Oliver Obst.Specifying Rational Agents with
Statecharts and Utility Functions.

4/2001 Torsten Gipp, J̈urgen Ebert.Conceptual
Modelling and Web Site Generation using
Graph Technology.

3/2001 Carlos I. Ches̃nevar, J̈urgen Dix, Frieder
Stolzenburg, Guillermo R. Simari.Relating
Defeasible and Normal Logic Programming
through Transformation Properties.

2/2001 Carola Lange, Harry M. Sneed, Andreas
Winter.Applying GUPRO to GEOS – A Case
Study.

1/2001 Pascal von Hutten, Stephan Philippi.
Modelling a concurrent ray-tracing algorithm
using object-oriented Petri-Nets.

2000

8/2000 Jürgen Ebert, Bernt Kullbach,
Franz Lehner (Hrsg.).2. Workshop Software
Reengineering (Bad Honnef, 11./12. Mai
2000).

7/2000 Stephan Philippi.AWPN 2000 - 7. Workshop
Algorithmen und Werkzeuge f¨ur Petrinetze,
Koblenz, 02.-03. Oktober 2000 .

6/2000 Jan Murray, Oliver Obst, Frieder Stolzenburg.
Towards a Logical Approach for Soccer Agents
Engineering.

5/2000 Peter Baumgartner, Hantao Zhang (Eds.).
FTP 2000 – Third International Workshop on
First-Order Theorem Proving, St Andrews,
Scotland, July 2000.

4/2000 Frieder Stolzenburg, Alejandro J. Garcı́a,
Carlos I. Ches̃nevar, Guillermo R. Simari.
Introducing Generalized Specificity in Logic
Programming.

3/2000 Ingar Uhe, Manfred Rosendahl.Specification
of Symbols and Implementation of Their
Constraints in JKogge.

2/2000 Peter Baumgartner, Fabio Massacci.The
Taming of the (X)OR.

1/2000 Richard C. Holt, Andreas Winter, Andy Schürr.
GXL: Towards a Standard Exchange Format.

1999

10/99 Jürgen Ebert, Luuk Groenewegen, Roger
Süttenbach.A Formalization of SOCCA.

9/99 Hassan Diab, Ulrich Furbach, Hassan Tabbara.
On the Use of Fuzzy Techniques in Cache
Memory Managament.

8/99 Jens Woch, Friedbert Widmann.Implementation
of a Schema-TAG-Parser.

7/99 Jürgen Ebert, and Bernt Kullbach, Franz
Lehner (Hrsg.).Workshop
Software-Reengineering (Bad Honnef, 27./28.
Mai 1999).

6/99 Peter Baumgartner, Michael K̈uhn.Abductive
Coreference by Model Construction.

5/99 Jürgen Ebert, Bernt Kullbach, Andreas Winter.
GraX – An Interchange Format for
Reengineering Tools.

4/99 Frieder Stolzenburg, Oliver Obst, Jan Murray,
Björn Bremer.Spatial Agents Implemented in a
Logical Expressible Language.

3/99 Kurt Lautenbach, Carlo Simon.Erweiterte
Zeitstempelnetze zur Modellierung hybrider
Systeme.

2/99 Frieder Stolzenburg.Loop-Detection in
Hyper-Tableaux by Powerful Model

Generation.

1/99 Peter Baumgartner, J.D. Horton, Bruce Spencer.
Merge Path Improvements for Minimal Model
Hyper Tableaux.

