
Categorization and Recognition of Categorization and Recognition of
Ontology Refactoring PatternOntology Refactoring Pattern

Gerd GrGerd Gröönerner
Steffen StaabSteffen Staab

Nr. 9/2010Nr. 9/2010

Arbeitsberichte aus demArbeitsberichte aus dem
Fachbereich InformatikFachbereich Informatik

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“ comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:
Der Dekan:
Prof. Dr. Zöbel

Die Professoren des Fachbereichs:
Prof. Dr. Bátori, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. Ebert, Prof. Dr.
Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Prof. Dr. Lämmel, Prof. Dr. Lautenbach, Prof. Dr. Müller, Prof. Dr. Oppermann, Prof.
Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr. Schubert, Prof. Dr. Staab,
Prof. Dr. Steigner, Prof. Dr. Sure, Prof. Dr. Troitzsch, Prof. Dr. von Kortzfleisch, Prof.
Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel

Kontaktdaten der Verfasser

Gerd Gröner, Steffen Staab
Institut WeST
Fachbereich Informatik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz
EMail: groener@uni-koblenz.de, staab@uni-koblenz.de

Categorization and Recognition of Ontology

Refactoring Pattern

Gerd Gröner and Steffen Staab

WeST — Institute for Web Science and Technologies
University of Koblenz-Landau

{groener, staab}@uni-koblenz.de

Abstract. Ontologies play an important role in knowledge representa-
tion for sharing information and collaboratively developing knowledge
bases. They are changed, adapted and reused in different applications
and domains resulting in multiple versions of an ontology. The compar-
ison of different versions and the analysis of changes at a higher level
of abstraction may be insightful to understand the changes that were
applied to an ontology. While there is existing work on detecting (syn-
tactical) differences and changes in ontologies, there is still a need in
analyzing ontology changes at a higher level of abstraction like ontol-
ogy evolution or refactoring pattern. In our approach we start from a
classification of model refactoring patterns found in software engineering
for identifying such refactoring patterns in OWL ontologies using DL
reasoning to recognize these patterns.

1 Introduction

Ontologies share common knowledge and are often developed in distributed en-
vironments. They are combined, extended and reused by other users and knowl-
edge engineers in different applications. In order to support a reuse of existing
ontologies, remodeling and changes are unavoidable and lead to different ontol-
ogy versions. Quite often, ontology engineers have to compare different versions
and analyze or recognize changes. In order to improve and ease the understand-
ability of changes, it is more beneficial for an engineer to view a more abstract
and high-level change description instead of a large number of changed axioms
(elementary changes) or ontology version logs like in [1]. A combination of ele-
mentary syntactic changes into more intuitive change patterns are described as
refactorings [2] or as composite changes [3].

However, the recognition of refactorings (or changes in general) is difficult due
to the variety of possible changes that may be applied to an ontology. Especially
if the comparison of different ontology versions is not only realized by a pure
syntactical comparison, e.g. a comparison of triples of an ontology, but rather
by a semantic comparison of entities in an ontology and their structure.

The need to detect high-level categorizations of changes is already stated
in [1, 4, 5]. High-level understanding of changes provides a foundation for fur-
ther engineering support like visualization of changes and extended pinpointing

3

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

focusing on entailments of refactorings rather than individual axiom changes.
In order to tackle the described problem, the following two issues lack a thor-
ough investigation: (i) A high-level categorization of ontology changes like the
well established refactoring patterns in software engineering. (ii) An automatic
recognition of refactoring patterns for OWL ontologies that goes beyond mere
syntactic comparison.

The recognition of refactorings is a challenging task due to the variety of
possible changes and insufficient means for a semantic comparison of ontology
versions. In particular, we identify the issue that we require a semantic com-
parison of different versions of classes rather than their syntactical comparison.
Semantic comparison allows for taking available background knowledge into ac-
count while abstracting from elementary changes like adding and deleting a single
axiom.

There are different approaches that detect ontology changes by a syntactical
comparison of the classes like in [4, 6] or the combination of adding and deleting
RDF-triples to high-level changes in [5]. A structural comparison using matching
algorithms is considered in [7]. More related to our research is the work on version
reasoning for (modular) OWL ontologies in [8, 9]. However, their focus is mainly
on integrity checking, entailment propagation between versions and consistency
checking of ontology mappings.

In this paper, we tackle the problem of refactoring recognition using descrip-
tion logic (DL) reasoning in order to semantically compare different versions of
an OWL DL ontology. We apply the semantic comparison in heuristic algorithms
to recognize refactoring patterns. Extrapolating from [2, 3] we have defined dif-
ferent refactoring patterns of how OWL ontologies may evolve.

We organize this paper as follows. Section 2 motivates the problem of schema
changes and describes shortcomings of existing approaches. In Sections 4, 5 and
6, we give an overview of the considered refactoring patterns and describe in
detail two of them. The comparison of ontology versions and the recognition of
the refactoring patterns using DL reasoning is demonstrated in Sections 7 and
8. The evaluation is given in Section 9. We analyze related work in Section 10,
followed by the conclusion.

2 An Ontology Refactoring Scenario

In order to clarify the problem we tackle, we start with a motivating example that
highlights the problem followed by some argumentation in favor of a semantic
version comparison for recognizing refactorings.

2.1 Motivating Example

In this section, we consider an ontology change (or ontology evolution) from ver-
sion V to V ′ that includes multiple elementary changes. An example is displayed
in Fig. 1 and 2. Snippets of the corresponding ontology versions are depicted be-
low. In order to highlight the changed axioms in the example, we mark axioms

4

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

that are deleted from version V with (d) and axioms that are added are marked
with (a) at the end of the line. Person, Employee, Project, ContactData and
Department are OWL classes, Employee is a subclass of Person. The properties
name, SSN , telephone and address are datatype properties with range string

and project, department and contact are object properties.

Employee ⊑ Person

Employee ⊑ ∃ project.Project (d)

Employee ⊑ ∃ department.Department

Employee ⊑ ∃=1 SSN.string (d)

Person ⊑ ∃ name.string

Person ⊑ ∃ address.string (d)

Person ⊑ ∃ telephone.string (d)

Fig. 1. Ontology Version V

Employee ⊑ Person

Employee ⊑ ∃ department.Department

Employee ⊑ ∃≥1SSN.string (a)

Person ⊑ ∃ name.string

Person ⊑ ∃≤1 SSN.string (a)

Person ⊑ ∃ contact.ContactData (a)

ContactData ⊑ ∃ telephone.string (a)

ContactData ⊑ ∃ address.string (a)

Department ⊑ ∃ project.Project (a)

Fig. 2. Ontology Version V ′

We recognize three refactorings from version V to V ′. First: the pattern Pull-
Up Property moves a property restriction SSN (here a datatype property restric-
tion) from class Employee to its superclass Person. In version V there are im-
plicitly two cardinality restrictions in the property restriction ∃=1 SSN.string.
This is semantically equivalent with the restrictions ∃≤1 SSN.string and
∃≥1 SSN.string. In the example, the datatype property restriction with the
maximal cardinality restriction is moved to the superclass Person. The min-
imal cardinality restriction remains in the class Employee. Second: Extract
Class moves the datatype properties address and telephone to a newly cre-
ated class ContactData that does not contain further properties. In version V ′
the class Person has a further object property contact with range ContactData.
We refer to such an object property as a reference from class Person to class
ContactData. Third: Move Of Property moves an object property project from
the class Employee to the class Department.

As demonstrated in the ontology excerpt below the diagrams, the refactorings
are syntactically represented by a number of added and deleted axioms from
version V to V ′. For instance, the movement of the datatype property SSN

5

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

from the class Employee to its superclass is represented in the ontology by
the deleted axiom Employee ⊑ ∃=1 SSN.string and the newly added axioms
(version V ′) Person ⊑ ∃≤1 SSN.string and Employee ⊑ ∃≥1 SSN.string.

In order to improve the understanding and recognition of changes between
ontology versions, we argue that it is more intuitive and helpful for the ontol-
ogy engineer to characterize changes at a higher abstraction level like by the
identification of refactoring patterns instead of indicating a large collection of
added and deleted axioms. For instance, consider the second mentioned refactor-
ing which extracts the datatype properties telephone and address to the newly
created class ContactData. Obviously, such a high-level change characterization
is more intuitive for an ontology engineer than a listing of changed axioms. In
this refactoring at least two axioms are deleted and three axioms are added to
the ontology.

2.2 Discussion of Shortcomings

We already argued for the need of a semantic comparison of the versions rather
than a syntactic or a purely structural comparison of OWL ontologies. This is
mainly due to the various possibilities of defining classes in OWL compared to
RDF(S) like class definitions using intersection, union or property restrictions.
We give two examples for shortcomings of syntactical and structural compar-
isons.

Consider again the third refactoring (Move Of Property) from Fig. 1 and
2, where the object property project is moved from the class Employee to
the class Department. Breaking down this refactoring to axiom changes, we
would delete the axiom Employee ⊑ ∃ project.Project and add the axiom
Department ⊑ ∃ project.Project. Now, we slightly extend this refactoring.
Suppose there are two subclasses of Department, InternalDepartment and
ExternalDepartment and the property restriction ∃ project.Project is moved
to both classes InternalDepartment and ExternalDepartment rather than to
the superclass Department. In this case, the ontology contains two new ax-
ioms and one is still removed. If there is a further axiom in the ontology de-
scribing that each department is either an internal or an external department
(Department ≡ InternalDepartment ⊔ ExternalDepartment) and there is
no other department, we can conclude that after the refactoring project is a
property of Department as well. Therefore, we identify a refactoring that moves
a property (project) from a class to another class (Department) but without
changing an axiom that contains the classDepartment itself. This is not possible
with a purely syntactical comparison.

As a second example, we demonstrate shortcomings of structural (and frame-
based) comparisons which compare classes and their connections, i.e. domain
and range of properties. Consider again the move of the datatype property SSN

with minimal cardinality restriction from the class Employee to Person. Here,
we compare the class Employee in both versions. The cardinality restriction that
restricts the class Employee to exactly one SSN is explicitly stated in version V .
Semantically, in version V ′ the restriction for class Employee is exactly the same

6

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

due to inheritance and the conjunction of the minimal and maximal restrictions
which also results in exactly one SSN property. This equivalence of the class
Employee in both versions is not detected by a purely structural comparison.

3 Modeling Foundations and Background

In this section, we start with some modeling principles that are assumed and
basic definitions that we require for the language. We use the Web Ontology Lan-
guage (OWL), or more precisely OWL DL to represent ontologies. The second
contribution of this section is the definition of refactoring patterns.

3.1 Modeling Assumptions and Definitions

For a more compact notation, we describe a class in version V with C and we
use C′ to refer to this class in version V ′. We use the term reference for an object
property restriction. The range of this property is called the referenced class or
the target class of a reference.

An inverse reference is used to describe a reference that uses the inverse
property and the domain and range classes are switched. For instance, the class
C has a reference (object property restriction p) to class D that is an axiom like
C ⊑ ∃ r.D where the right side of the axiom is the property restriction p on
the object property r. The inverse reference from D to C uses the inverse object
property r− and is described by an axiom D ⊑ ∃ r−.C.

In the considered refactoring patterns we are analyzing the change of property
restrictions in classes rather than changes of properties. If property restrictions
are changed this is always realized by axioms in class definitions like subclass
axioms. Hence, we use the term ”add property” that means adding a property
restriction to a class definition and likewise ”delete property” has the meaning
of deleting a property restriction to a class definition. In the same way, ”move
property” is a change that deletes a property restriction in a class definition and
adds this property restriction to another class definition.

A refactoring pattern is an abstract description (or template) of an ontology
change or evolution that is applied to realize a certain ontology remodeling. The
kind of remodeling depends on the ontology engineer and is mainly a collection
of best practise ontology remodeling and evolution steps. A refactoring is an
instantiation of a refactoring pattern, i.e. a concrete change of an ontology.

Our recognition approach works correctly for a slightly restricted subset of
OWL DL where we add some restrictions known in OWL Lite. Even the more
restrictive OWL Lite language fully covers OWL DL except of cardinality restric-
tions greater than 1 and individuals in class definitions (cf. [10]). The required
language restriction is given in Def. 1.

Definition 1 (Language Restrictions). We restrict OWL DL (SHOIN) by
the following additional conditions:

7

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

1. In each property restriction ∃p.E and ∀p.E, E is a named class. The same
condition is also required for cardinality restrictions.

2. Individuals are not allowed in class definitions, i.e. no oneOf constructor.

3.2 Ontology Refactoring Patterns

A basic and famous definition of patterns is given in [11] that defines a pattern
as a description of a recurring problem and the corresponding basic solution of
the problem such that this pattern can be applied multiple times if the defined
problem occurs. A refactoring pattern describes a certain modeling problem
(of an ontology) and the corresponding remodeling steps in order to solve the
problem. A refactoring pattern consists of the following elements in our approach:

1. The Name of the pattern.
2. The Problem Description characterizes a modeling structure of an ontology

and indicates when this pattern is applicable.
3. The Solution describes how the problem is (or could be) solved. This contains

the required remodeling steps in order to realize the refactoring.
4. The Example demonstrates the technical details of this refactoring including

the applied changes of the ontology.

Hereafter, we demonstrate refactoring patterns in detail. The patterns are
split into three groups and we provide examples for at least one pattern of each
group in order to demonstrate the usage of this pattern. We omit examples for
those pattern that are quite similar to other patterns.

4 Adding and Deleting Classes

In this group, we collect patterns that add or delete classes combined with mov-
ing of properties (object and datatype properties) between these classes. Com-
pared to other refactoring patterns, properties are only moved in combination
with creating or deleting classes in these patterns. Furthermore, we categorized
these refactoring patterns into three sub-groups. The first sub-group extracts a
class from an existing class. This is realized by creating a new class and move
properties from an existing class to this new class. In the second sub-group, the
pattern Inline Class deletes one class and moves the properties to another class.
Finally, the third sub-group collects more complex and hierarchical changes like
extracting sub- and superclasses simultaneously.

4.1 Extracting a Class

In this subsection, we present three patterns that extract (move) properties
from a class to a newly created class. The patterns Extract Subclass and Extract
Superclass are specializations of Extract Class where the newly created class is
either a sub- or a superclass of the existing class.

8

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Extract Class The first refactoring pattern we consider is Extract Class that
captures the extraction of properties from an existing class into a newly created
class.

Problem Description In version V there is a named class C with property restric-
tions p1, . . . , pn on properties (datatype and object properties) r1, . . . , rn defined
in the ontology version V . An ontology engineer identifies that these property re-
strictions p1, . . . , pn are still related to this class but should be grouped together
and extracted into a new class.

Solution A new class D is created and all the identified or selected property
restrictions p1, . . . , pn are moved from C toD. A new object property q is created
and an axiom for the reference (object property restriction) on q to the new class
D is added that requires for the class C to have a reference to the class D. For
instance, we add the axiom C ⊑ ∃ q.D.

Example In the example of Fig. 1 and 2, the engineer identifies the property
restrictions containing the properties address and telephone of the class Person

in V that should be extracted to a new class. The new class ContactData is
created in version V ′ and the identified property restrictions are added by adding
axioms to the new ontology version like ContactData ⊑ ∃ address.string. The
corresponding axioms of the moved properties are removed in the class definition
of the class Person. Finally, the reference to the new class is added to Person,
e.g., by the added axiom Person ⊑ ∃ contact.ContactData.

Extract Subclass This refactoring pattern captures the extraction of proper-
ties from an existing class into a newly created subclass.

Problem Description In version V there is a named class C with property re-
strictions p1, . . . , pn that are property restrictions on properties defined in the
ontology V . These property restrictions p1, . . . , pn are related to this class but
should be grouped together and extracted into a newly created subclass.

Solution A new class D is created and all the identified or selected property
restrictions p1, . . . , pn are moved from C to D. In the ontology this is realized
by deleting subclass axioms like C ⊑ ∃ri.E with C as the subclass and adding
subclass axioms with the new class D as subclass, e.g., D ⊑ ∃ri.E (i = 1, . . . , n).
ri is the property of the property restriction pi. A further axiom is added to V ′
to represent the subclass relation: D ⊑ C.

Extract Superclass This refactoring pattern captures the extraction of prop-
erties from an existing class into a newly created superclass.

Problem Description In version V there is a named class C with property restric-
tions p1, . . . , pn on properties of the ontology versions V . An ontology engineer
identifies that these property restrictions should be moved to a superclass that
does not exist yet.

9

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Solution A new class D is created and property restrictions p1, . . . , pn are moved
from C to D. In the ontology this is realized by deleting subclass axioms like
C ⊑ ∃ri.E and adding subclass axioms with the new class D as subclass, e.g.,
D ⊑ ∃ri.E (i = 1, . . . , n). ri is the property of the property restriction pi. A
further axiom is added to V ′ to represent the subclass relation: C ⊑ D.

4.2 Deleting a Class

The Inline Class refactoring pattern describes the deletion of a class including
the movement of properties.

Inline Class This refactoring pattern is the inverse of Extract Class. A class is
deleted and the property restrictions are moved to a class that references this
class.

Problem Description There is a named class C and a referenced class D in
the ontology version V . The class D contains property restrictions p1, . . . , pn
on properties defined in V and the class D is referenced by C with an object
property restriction on property q (e.g., there is an axiom C ⊑ ∃q.D).

Solution The classD is deleted and all property restrictions p1, . . . , pn are moved
from class D to class C. The reference from class C to D is removed, e.g. by
deleting the corresponding axiom on q with range of classD like C ⊑ ∃q.D. All
sub and superclass relations of D are neglected, these relations do no longer exist
in V ′.

Example As already mentioned, this is the inverse of the Extract Class refac-
toring pattern. Hence, we can illustrate this by using the example of Fig. 1 and
2 the other way around, i.e. from version V ′ to version V and delete the class
ContactData that is referenced by the class Person. The property restrictions
on the properties address and telephone of ContactData are moved to the class
Person.

4.3 Complex Hierarchical Change

We present two refactoring patterns with more complex changes, i.e. at least two
classes are involved in a refactoring. Both change the hierarchical structuring of
classes.

Collapse Hierarchy A class hierarchy is collapsed by merging a sub- and
superclass to one new class. The intuition behind this pattern is that these two
classes are not very different and could be represented by one class.

Problem Description In version V there is a named class C that is the superclass
of the class (subclass) D. The class C contains property restrictions p1, . . . , pn on
properties defined in V and the subclass contains property restrictions r1, . . . , rn,
respectively. The ontology engineer wants to merge both classes into one, includ-
ing all property restrictions and the superclasses of C and D.

10

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Solution A new class E is created. All property restrictions are moved from C

and D to E. As a next step, all superclasses of D except of the class C are also
superclasses of the new class E. For each superclass F of D, we add an axiom
E ⊑ F to the ontology and remove the corresponding axiom that define the
superclasses of D like D ⊑ F . The class F has to be a named class. Due to
inheritance, the superclasses of C are also superclasses of D. The classes C and
D are removed form the new ontology version V ′.

Extract Hierarchy This pattern extracts sub- and superclasses like Extract
Subclass and Extract Superclass but there can be multiple sub- and superclasses
extracted by a change from version V to V ′.

Problem Description In version V there is a named class C with property re-
strictions p11 , . . . , p1k1

, p21 , . . . , p2k2
, . . . , pm1

, . . . , pmkm
and further property re-

strictions pm+11 , . . . , pm+1km+1
, pm+21 , . . . , pm+2km+2

, . . . , pm+n1
, . . . , pm+nkm+n

on properties defined in the ontology version V . An ontology engineer identi-
fies that these property restrictions are moved to m new superclasses and n

new subclasses. Each property restriction is moved to exactly one new super- or
subclass.

Solution New classes C1, . . . , Cm, Cm+1, . . . , Cm+n are created that represent
the super- and subclasses of C. Firstly, the new super- and subclass relations
are created by adding the corresponding axioms.

– For each new superclass Ci (i = {1, . . . ,m}) a subclass axiom C ⊑ Ci is
added to the ontology.

– For each new subclass Ci (i = {m+1, . . . ,m+n}) a subclass axiom Ci ⊑ C

is added to the ontology.

Secondly, the property restrictions are moved to the corresponding super- and
subclasses:

– For each superclass Ci (i = {1, . . . ,m}) and every property restriction pj
(j = {i1, . . . , iki

}) the property restriction pj is moved from C to Ci.
– For each subclass Ci (i = {m+1, . . . ,m+n}) and every property restriction

pj (j = {i1, . . . , iki
}) the property restriction pj is moved from C to Ci.

5 Moving of Property Restrictions

Move of Property In the Move Of Property pattern, property restrictions of
a class are moved to another existing class.

Problem Description A named class C has property restrictions p1, . . . , pn on
properties and it has a reference r to another named class D that is described by
an object property restriction in the definition of class C. The ontology engineer
would like to move the property restrictions (p1, . . . , pn) from the class C to the
referenced class D.

11

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Solution The identified property restrictions are moved to the class D. The
ranges in these moved property restrictions p1, . . . , pn remain unchanged.

Example In the example of Fig. 1 and 2, the object property restriction on the
object property project should be moved from the class Person to Department.
The class Department is already referenced by the class Person with the ob-
ject property department. In version V ′, the corresponding axiom Employee ⊑
∃project.Project is deleted and the axiom Department ⊑ ∃project.Project is
added to the ontology.

Pull-Up Property Property restrictions of a class are moved to an existing
superclass.

Problem Description A named class C has property restrictions p1, . . . , pn on
properties. There is a superclass D that is a named class too. These property
restrictions from the class C should be moved to the superclass D.

Solution The identified property restrictions are moved to the superclass D. The
ranges in these moved property restrictions p1, . . . , pn are unchanged.

Example In the example of Fig. 1 and 2, the datatype property restriction on
the datatype property SSN with the maximal cardinality restriction should
be moved from the class Employee to Person. That means, the property
that requires for each Employee to have at most one SSN should be re-
moved from the employee definition and it should be a property of the su-
perclass Person. The minimal cardinality restriction on SSN (≥ 1) remains
unchanged. In the ontology, this is realized by deleting the axiom in the defini-
tion of class Employee: Employee ⊑ ∃≥ 1 SSN.string and by adding the axiom
Person ⊑ ∃≥ 1 SSN.string to the ontology.

Push-Down Property The Push-Down Property pattern covers the movement
of property restrictions of a class to an existing subclass. This pattern is the
inverse of Pull-Up Property.

Problem Description A named class C has property restrictions p1, . . . , pn on
properties. A named class D is the subclass of C. The goal is to move the
property restrictions from the class C to its subclass D.

Solution The ranges of the moved property restrictions remain unchanged. The
property restrictions are moved to the subclass D.

6 Modifying Property Restrictions

Refactoring patterns that modify property restrictions are describes in this sec-
tion.

12

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

6.1 Adding and Deleting Inverse References

We describe two pattern, one for adding and one for deleting an inverse reference.

Unidirectional to Bidirectional Reference From a conceptual modeling
point of view, the refactoring pattern Unidirectional to Bidirectional Reference
changes a reference from a class to another class into a bidirectional reference,
i.e. the reference in the other direction is added. In an ontology, this is realized by
property restrictions that use the inverse property of the existing (unidirectional)
reference.

Problem Description There is an object property restriction p on a property,
defined in the named class C that references another named class D. The aim
of the ontology engineer is to add a property restriction to the class D that
references the class C and is an inverse of the object property that is restricted
in the object property restriction p.

Solution An object property is created that is inverse to the existing property
from the property restriction p. A property restriction r is defined in the class
D using the same quantifier as in p. The property in the property restriction r

is the new inverse property. The range is the class C.

Example An example for this pattern could be created using the reference
department from the class Employee to Department, given by the axiom
Employee ⊑ ∃ department.Department. Adding the inverse reference would
be realized by creating an object property like employee that is the inverse of
department (e.g. employee = department−) and the corresponding property re-
striction on the class definition of the class Department is added to the ontology.
For instance, the axiom Department ⊑ ∃ employee.Employee is inserted into
the ontology.

Bidirectional to Unidirectional Reference The refactoring pattern Bidirec-
tional to Unidirectional Reference is the inverse of Unidirectional to Bidirectional
Reference, i.e. for a reference to a class its existing inverse reference is removed,
resulting in a unidirectional reference.

Problem Description There is an object property restriction p on an object
property, defined in the class definition of class C. The class C references the
class D. In the named class D, there is also an object property restriction r that
references the class C and the property restricted by p is the inverse property of
the property that is restricted by the property restriction r.

Solution The property restriction r is removed from the class definition of the
class D.

13

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

6.2 Changing Reference Cardinality Restrictions

Cardinality Change Cardinality Change is a refactoring pattern that de-
scribes the change of a cardinality for an existing property restriction (datatype
and object property restriction). Cardinalities can be restrictions using equal,
greater or equal and less or equal compared with a natural number. Cardinal-
ities only occur in combination with existential quantifies. In case there is no
cardinality specified, this represents implicitly an at least one cardinality re-
striction. A cardinality restriction with equal relation (=) can be represented by
two restrictions using greater/less or equal relations. Hence, we can neglect the
case of equality condition in cardinality restrictions.

Problem Description There is a property restriction p with cardinality restriction
using a comparison relation ≤ or ≥ and a natural number n. The ontology
modeler is interested in changing the number n in the restriction.

Solution The number is changed according to the need of the modeler. In the on-
tology, this is realized by deleting the axiom describing the cardinality restriction
and adding a new axiom with the new number as a cardinality.

Example In the running example of Fig. 1 and 2 the cardinality restriction of
the datatype property restriction on SSN is changed. The maximal restriction
is changed from 1 to ∞. In the ontology the axiom Employee ⊑ ∃=1 SSN.string

is deleted and the axiom Employee ⊑ ∃≥1 SSN.string is added.

7 DL-Reasoning for Ontology Comparison

In this section, we describe the usage of DL reasoning in order to semantically
compare ontology versions. We distinguish between three types of comparisons:
(i) A syntactic comparison checks whether for a class or property in the ontology
V there is an entity with the same name in V ′. (ii) The structural comparison
compares classes and their structure, i.e. sub- and superclass relations and object
property restrictions of this class. Hence, a class with all ”connected” classes
is compared in both versions. (iii) In a semantic comparison, classes of both
versions are compared using subsumption checking, testing the equivalence, sub-
and superclass relations between a class by comparing the interpretations.

7.1 Knowledge Base Merging

The first step of the recognition is a syntactical comparison between ontology
version V and V ′. We compare the names (IRIs) of classes and properties of
both versions.

Based on the comparison of named classes and properties we build a common
knowledge base that captures both, the original version V and the modified
version V ′. Furthermore, we have to make the classes of the different versions
distinguishable in order to allow a semantic comparison. For each named class
C that occurs in both versions V and V ′ we build the common knowledge base

14

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

as follows: (i) The class C is renamed, e.g. C1 for the class in version V and a
class C2 for the class in version V ′. (ii) Both classes C1 and C2 are subclasses of
the superclass C. (iii) In every class expression (anonymous class) if Ci occurs
as a class in the range of a property restriction, the class Ci is replaced by its
superclass C. We refer to this procedure as generalization.

7.2 Semantic Version Comparison

We distinguish between the name or label of a class (C) and the intensional
description of the class, i.e., the object and datatype properties that describe
the class. The extension of a class, i.e., the set of instances of this class, is
denoted using semantic brackets [[C]].

We use Ĉ as a representation of the class C in a conjunctive normal form,
i.e. Ĉ ≡ C1 ⊓ . . . ⊓ Cn where ∀i = 1, . . . , n there is an axiom in the ontology
C ⊑ Ci and Ci is a class expression. Hence, C is subsumed by each Ci. In order
to ease the comparison of classes in two versions, we apply a normalization and
reduction of Ĉ resulting in a reduced conjunctive normal from C̃.

Definition 2 (Reduced Conjunctive Normal Form). A class definition in
conjunctive normal form Ĉ is reduced to C̃ by the following steps:

1. Flattening of nested conjunctions, i.e. A ⊓ (B ⊓ C) becomes A ⊓B ⊓ C.
2. Negations are normalized such that in all negations ¬C, C is a named class.
3. If B ⊑ A holds and A ⊔ B is a class expression in Ĉ, the expression is

replaced by A in C̃.

The main advantage of the normalization is a unique representation that can
be assumed for the class definition C which is exploited in the comparison later
on. This unique representation is ensured by Lemma 1. The definition of the
reduced conjunctive normal form C̃ is used in the comparison algorithms below.
We will see later on, that we are only interested in class expressions Ci that are
either property restrictions or named superclasses.

Lemma 1 (Uniqueness of the Reduced Conjunctive Normal Form).
Ĉ ≡ C1⊓. . .⊓Cn is a class in conjunctive normal form and C̃ is the reduced con-
junctive normal form of the class C. For each class expression Ci (i = 1, . . . , n)
one of the following conditions hold: (i) Ci is a named class, (ii) Ci is a datatype
or object property restriction or (iii) Ci is a complex class definition that can
neither be a superclass of C nor a property restriction.

Proof. It is easy to see whether Ci satisfies the first or second condition, i.e.
either Ci is a named class or a property restriction (including qualified property
restrictions). In the following, we prove the third condition, assumed that Ci

is neither a named class nor a property restriction. We consider the remaining
possible class constructors that are allowed according to the language restriction
from Def. 1. We show that either the third condition is satisfied or the expression
is not allowed after the reduction:

– if Ci ≡ ¬D then Ci cannot be a superclass of C and (iii) is satisfied.

15

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

– Ci ≡ ¬∀R.D or Ci ≡ ¬∃R.D is not allowed after the reduction according
No. 2 in Def. 2

– Ci ≡ D ⊓ E is not allowed as restricted in No. 1 in Def. 2 (flattening).
– Ci ≡ D ⊔ E then Ci cannot be a superclass of D. Trivial equivalent rep-

resentations like Ci ≡ D ⊔ E and E ⊑ D are not allowed (cf. No. 3 in
Def. 2).

⊓⊔

We demonstrate two algorithms that detect different and common class ex-
pressions of a class in two versions. The Diff-Algorithm (Fig. 3) computes all class
expressions that subsume the class C′ in version V ′, but not C in V . In order to
compute the difference1 the Diff-Algorithm is used twice. Diff(C, V, V ′) returns
all class expressions that subsume C′ in V ′. Class expressions that subsume C

of V are the result of Diff(C, V ′, V).

Algorithm: Diff(Class C, Ontology version V , Ontology version V ′)
Input: A class C and two ontology versions (V , V ′)
Output: A set of class expressions which subsumes C′ in V ′ but not class C in V .

1: /* Compute the new additional class expressions in C′ of V ′ */
2: D := ∅
3: for each class expression A of C̃′ of V ′ do
4: if [[C]] 6⊑ A in V then

5: D := D ∪ {A}
6: end if

7: end for

8: Return D.

Fig. 3. The Diff-Algorithm.

The Common-Algorithm in Fig. 4 extracts the common class expressions of
a class C in both versions. Therefore, the subsumption of the class expressions
from one version compared with the other is checked in both directions, i.e., D1

are class expressions from version V that are subsumed by V ′ and D1′ vice versa.
D is the intersection of D1 and D1′ and consists of all class expressions from C

in both versions.
We use the ExtractReferenceClasses-Algorithm from Fig. 5 to obtain the

classes that are referenced by the class C, i.e. the range of a property re-
striction in the class definition of C. The algorithm works as follows. The in-
put class expression C is a reference to another class (object property restric-
tion) like ∃contact.ContactData. The result is the class that is referenced, e.g.
ContactData. The algorithm uses set operations and returns a set of classes.

The method getProperty returns the object property (object property name)
of the given object property restriction (class expression) C. Such methods are
provided by OWL-APIs like [13]. The referenced class can not directly be ex-
tracted from the expressions using API operations, since in general the expression

1 This definition is different from the definition of the stronger definition of DL differ-
ence from [12]. In [12], the difference of two descriptions requires that the minuend
is subsumed by the subtrahend.

16

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Algorithm: Common(Class C, Ontology version V , Ontology version V ′)
Input: A class C and two ontology versions (V , V ′).
Output: A set of class expressions, which subsumes C in V and C′ in V ′.

1: /* Common class expressions D of C and C′ in both ontology versions V , V ′.
2: D1 are class expressions of C in V subsumed in V ′, and D1′ are class expressions

of C′ in V ′ subsumed in V . */
3: D1 := ∅ and D1′ := ∅
4: for each class expression A ∈ C̃ of V do

5: if [[C′]] ⊑ A in V ′ then
6: D1 := D1 ∪ {A}
7: end if

8: end for

9: for each class expression A ∈ C̃′ of V ′ do
10: if [[C]] ⊑ A in V then

11: D1′ := D1′ ∪ {A}
12: end if

13: end for

14: Return D := D1 ∩ D1′.

Fig. 4. The Common-Algorithm.

could be more complex than just a single OWL class as in our applications with
language restrictions. Therefore, we have to implement this algorithm. Meth-
ods like IsObjectPropertyRestriction or IsPropertyRestriction are provided
by APIs as well. For property restrictions with universal quantifiers the refer-
enced class can be extracted likewise, but this is not required in our recognition
approach.

The Diff- and Common-Algorithm compute for a class C, the class expres-
sions Ci that subsume C. These class expressions are expressions Ci of the re-
duced conjunctive normal form C̃. Hence, all class expressions of the result of
the Diff- and Common-Algorithm are in reduced conjunctive normal form too.

The focus of our approach is to recognize the introduced refactoring patterns
rather than identifying arbitrary ontology changes. Hence, we can neglect some of
the class expressions that are in the result of the Diff- and Common-Algorithm.
All the considered refactoring patterns only change sub- and superclass rela-
tions and property restrictions in class definitions. Therefore, the only relevant
class expressions in the result set of the Diff- and Common-Algorithm are those
class expressions that are named classes (representing superclasses) and property
restrictions. According to Lemma 1, we can easily determine whether a class ex-
pression Ci of the result of the algorithms is a superclass, a property restriction
or another complex class expression that can be neglected in the comparison.

8 Refactoring Pattern Recognition

In this section, we demonstrate the recognition of the already introduced refac-
toring patterns

Extract Class This refactoring is illustrated in Fig. 1 and 2. One recognizes
the refactoring according to the algorithm in Fig. 6.

17

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Algorithm: ExtractReferenceClasses(Class expression C, Ontology version V)
Input: Class expression C that is an object property restriction e.g.,
∃=1contact.ContactData and an ontology version (V)
Output: A set of classes which are referenced by the class expression C (e.g., the
class ContactData).

1: D := ∅ /* for the referenced classes */
2: if IsObjectPropertyRestriction(C) then

3: for each class R of version V do

4: if [[C]] ⊑ ∃ getProperty(C). R then

5: D := D ∪ {R}
6: end if

7: end for

8: end if

9: Return D.

Fig. 5. The ExtractReferenceClasses-Algorithm.

Algorithm: Recognize-ExtractClass(Ontology version V , Ontology version V ′)
Input: Ontology versions V and V ′
Output: Extracted Class E

1: E := ⊥
2: for all classes C and C′ that are different in version V and V ′ do
3: D1 := Diff(C, V, V ′) AND D2 := Diff(C, V ′, V)
4: if |D1| = 1 then

5: D1 ∈ D1:
6: if IsObjectPropertyRestriction(D1) then
7: RC := ExtractReferenceClasses(D1, V ′)
8: if |RC| = 1 AND ∀ D2 ∈ D2 : ∃ RC ∈ RC : [[RC]] ⊑ D2 AND

∀ D2 ∈ D2 : IsPropertyRestriction(D2) then
9: E := RC

10: end if

11: end if

12: end if

13: end for

14: Return E

Fig. 6. Algorithm for Recognizing Extract Class.

18

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Algorithm: Recognize-ExtractSubclass(Ontology version V , Ontology version V ′)
Input: Ontology versions V and V ′
Output: Extracted Class E

1: E := ⊥
2: for all classes C and C′ that are different in version V and V ′ do
3: for all classes D that are classes in V ′ but not in V and D ⊑ C′ holds do
4: D1 := Diff(C, V, V ′) AND D2 := Diff(C, V ′, V)
5: if D1 = ∅ AND ∀ D2 ∈ D2 : D ⊑ D2 AND ∀ D2 ∈ D2 :

IsPropertyRestriction(D2) then

6: E := D

7: end if

8: end for

9: end for

10: Return E

Fig. 7. Algorithm for Recognizing Extract Subclass.

The algorithm in Fig. 6 returns the extracted class (version V ′) if the refac-
toring is successfully recognized, otherwise the result is the empty class (⊥). The
algorithm works as follows. All named classes C and C′ that exist differently in
both versions are compared (line 2). In line 3 the difference is computed. For
instance, the set D1 consists of all class expressions which are only in [[C′]] of
V ′ but not in V . C′ of V ′ contains exactly one additional reference to another
class, i.e., a change only extracts one class. Therefore, we require that D1 is a
singleton set (line 4) and that D1 is an object property restriction (line 6). In
line 7, the new class that is referenced by C is extracted. In line 8, we ensure
that property restrictions are only moved to one class, i.e. RC is a singleton set.
Finally, it is required that all property restrictions are moved correctly to the
new class RC (subsumption in line 8). The second and third conditions in line 8
ensure that only property restrictions and no other class expressions are moved
and that they are moved to the correct class RC. The result is the referenced
class RC (RC is singleton). The recognition result for the example in Fig. 1 and
2 is as follows:
D1 = {∃contact.ContactData} (reference in V ′)
D2 = {∃address.string, ∃telephone.string} (property restrictions in V)
RC = {ContactData} (The only reference in D1 is ∃contact.ContactData.)
RC = ContactData and D2 = ∃address.string and [[RC]] ⊑ D2 holds.

Extract Subclass One recognizes the refactoring according to the algorithm
in Fig. 7. As in the algorithm for Extract Class classes C and C′ that changed
from version V to V ′ are selected (line 2) and the difference is computed (line 4).
In line 3, a class is selected that is new in version V ′ and does not exist in
version V and this class must be a subclass of C′. In line 4, the conditions of
Extract Subclass are checked. D1 is empty, i.e. no property restriction is moved
to C. All extracted property restrictions are contained in the set D2. The second
condition checks whether all class restrictions in D2 are moved to the new classD
and the third condition guarantees that all class expressions in D2 are property
restrictions. This can be easily checked as stated in Lemma 1.

19

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Algorithm: Recognize-InlineClass(Ontology version V , Ontology version V ′)
Input: Ontology versions V and V ′
Output: Deleted Class E

1: E := ⊥
2: for all classes C and C′ that are different in version V and V ′ do
3: D1 := Diff(C, V, V ′) AND D2 := Diff(C, V ′, V)
4: if |D2| = 1 then

5: D2 ∈ D2:
6: if IsObjectPropertyRestriction(D2) then
7: RC := ExtractReferenceClasses(D2, V)
8: if |RC| = 1 AND ∀ D1 ∈ D1 : ∃ RC ∈ RC : [[RC]] ⊑ D1 AND

∀ D1 ∈ D1 : IsPropertyRestriction(D1) then
9: E := RC

10: end if

11: end if

12: end if

13: end for

14: Return E

Fig. 8. Algorithm for Recognizing Inline Class.

Extract Superclass The recognition of Extract Subclass works like the al-
gorithm for Extract Superclass. The only difference is that we are interested in
the superclasses D of C, i.e. we check whether C′ ⊑ D holds (line 3, Fig. 7).

Inline Class

The Inline Class refactoring pattern is the inverse of the Extract Class pat-
tern. The recognition works quite similar to the recognition of Extract Class
(Fig. 6). We describe the recognition of Inline Class in the algorithm given in
Fig. 8.

The conditions are reverted from the conditions in the recognition of Extract
Class. D1 contains the moved property restrictions and D2 the property restric-
tion (lines 3-5) that is the reference to the class D that becomes the inline class
in version V ′. There is only one referenced class (line 8). The other conditions
in line 8 ensure that all property restrictions in D1 are in the class RC in the
original version V . (here, RC is the class that becomes the inline class in version
V ′). In contrast to the recognition of Extract Class, we know that the property
restrictions from the set D1 are in the class C in the version V ′ from the result
of the Diff-Algorithm.

Collapse Hierarchy The recognition of Collapse Hierarchy is demonstrated
in Fig. 9. In lines 2 and 3, the super- and subclass from the version V are selected.
Similarly, in line 4 the class E′ is selected that is only in version V ′. The hierarchy
of the classes C and D is collapsed into the new single class E′. Hence, we check
in line 5 whether all class restrictions that subsume C and D are moved to the
class E.

Extract Hierarchy The recognition of the Extract Hierarchy refactor-
ing pattern is described in the algorithm in Fig. 10. As already mentioned in
Sect. 4.3, Extract Hierarchy is the combination of multiple Extract Subclass and

20

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Algorithm: Recognize-CollapseHierarchy(Ontology version V , Ontology version V ′)
Input: Ontology versions V and V ′
Output: The new class E

1: R := ⊥
2: for all classes C that are classes in V but not in V ′ do
3: for all classes D that are classes in V but not in V ′ and D ⊑ C holds do
4: for all classes E′ that are classes in V ′ but not in V do

5: if [[C]] ⊑ [[E]] AND [[D]] ⊑ [[E]] then

6: R := D

7: end if

8: end for

9: end for

10: end for

11: Return R

Fig. 9. Algorithm for Recognizing Collapse Hierarchy.

Extract Superclass refactorings, the algorithm is a combination of the algorithms
for these other patterns. In lines 3-8 the extracted subclasses are compared with
C′ and in lines 9-14 the comparison is applied to the superclasses, respectively.

Move of Property The algorithm in Fig. 11 recognizes the
Move of Property refactoring by the following steps. In lines 2-4, it is checked
for all classes whether the classes A and A′ are different in both versions V and
V ′ and the referenced classes B and B′ are also different in V and V ′. The differ-
ent class expressions of class A and B in both versions are computed (lines 5-6).
If all property restrictions are moved correctly from class A to B the four condi-
tions of line 7 have to be satisfied. Finally, the moved property restrictions are
the result of the algorithm (line 8 and 13). Algorithms to detect the other move
refactorings like the movement of property restrictions within a class hierarchy
work similarly.

The recognition of the example from Fig. 1 and 2 is as follows:
Existing references between these two classes: C1 = ∃ department.Department

Moved property restrictions:
A1 = {}, A2 = {∃ project.Project} B1 = {∃ project.Project} and B2 = {}

Pull-Up Property The recognition of Pull-Up Property is demonstrated
in Fig. 12. It is quite similar to the more general pattern Move Of Property
(Fig. 11). We compare the changes pairs of classes A and B in both versions (i.e.
A′ and B′). The difference is computed in lines 6,7. However, in this pattern A2 is
also empty due to inheritance, i.e. the properties that are moved to the superclass
A′ are still properties of B′. Therefore, we need here the Common-Algorithm to
compute all common class expression in the subclass B. This set also includes
the properties that are moved to the superclass because of inheritance. In the
conditions in line 8 we have to check whether the moved properties B2 are in the
common-set C1 to cope with inheritance.

Push-Down Property The recognition of Push-Down Property works simi-
larly to the recognition of Pull-Up Property as demonstrated in Fig. 12. We must

21

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Algorithm: Recognize-ExtractHierarchy(Ontology version V , Ontology version V ′)
Input: Ontology versions V and V ′
Output: Set of Extracted Classes E

1: E := ∅
2: for all classes C and C′ that are different in version V and V ′ do
3: for all classes D′ that are classes in V ′ but not in V and D′ ⊑ C′ holds do
4: D1 := Diff(C, V, V ′) AND D2 := Diff(C, V ′, V)
5: if D1 = ∅ AND ∀ D2 ∈ D2 : D ⊑ D2 AND ∀ D2 ∈ D2 :

IsPropertyRestriction(D2) then

6: E := E ∪ {D}
7: end if

8: end for

9: for all classes D′ that are classes in V ′ but not in V and C′ ⊑ D′ holds do

10: D1 := Diff(C, V, V ′) AND D2 := Diff(C, V ′, V)
11: if D1 = ∅ AND ∀ D2 ∈ D2 : D ⊑ D2 AND ∀ D2 ∈ D2 :

IsPropertyRestriction(D2) then

12: E := E ∪ {D}
13: end if

14: end for

15: end for

16: Return E

Fig. 10. Algorithm for Recognizing Extract Hierarchy.

consider the subclasses in line 3 and have to take into account the inheritance
for the comparison of the class A (subclass) instead of B.

Unidirectional to Bidirectional Reference The algorithm in Fig. 13 de-
scribes the recognition of the refactoring pattern Unidirectional to Bidirectional
Reference.

We start with the classes B and B′ that changed from version V to V ′ and
we choose classes A and A′ from V and V ′ (lines 2,3). The common and different
class expressions of A and A′ are computed (lines 4,5) and in line 6 the different
class expressions of B and B′ are computed. The class expressions of the class
A and A′ are in the set CA (Common-Algorithm). The conditions in line 7
guarantee that classes A and A′ are unchanged, nothing is removed from the
class B′ and only one class expression is added to B′ (B1 is singleton). In line 9
it is checked whether this additional class expression in B1 is an object property
restriction, since we are looking for a reference back to the class A′.

We extract the referenced class RC from this object property restriction B1.
This class must be the class A′ (line 11). In the next step in line 12, we select a
class expression C from the common expressions CA. The referenced class RC2

is extracted from this class expression C. This referenced class RC must be the
class B. Finally, we have to check whether the object properties of the object
property restrictions in C and B1 are inverse properties. This can be easily done
with existing APIs for given object property restrictions.

Bidirectional to Unidirectional Reference The recognition of the refac-
toring pattern Bidirectional to Unidirectional Reference works quite similar to

22

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Algorithm: Recognize-MoveOfProperty(Ontology version V , Ontology version V ′)
Input: Ontology versions V and V ′
Output: Set of moved property restrictions P

1: P := ∅
2: for all classes A and A′ in version V and V ′ that are different do
3: for all referenced classes B and B′ do

4: if B and B′ are also different in version V and V ′ then

5: A1 := Diff(A, V, V ′) AND A2 := Diff(A, V ′, V) AND
6: B1 := Diff(B, V, V ′) AND B2 := Diff(B, V ′, V)
7: if A1 = ∅ AND B2 = ∅ AND A2 = B1 AND ∀E ∈ A2 :

IsPropertyRestriction(E) then

8: P := A2

9: end if

10: end if

11: end for

12: end for

13: Return P

Fig. 11. Algorithm for Recognizing Move of Property.

Algorithm: Recognize-Pull-UpProperty(Ontology version V , Ontology version V ′)
Input: Ontology versions V and V ′
Output: Set of moved property restrictions P

1: P := ∅
2: for all classes A and A′ in version V and V ′ that are different do
3: for all subclasses B and B′ in both versions do

4: if B and B′ are also different in version V and V ′ then

5: C1 := Common(B, V, V ′)
6: A1 := Diff(A, V, V ′) AND A2 := Diff(A, V ′, V) AND
7: B1 := Diff(B, V, V ′) AND B2 := Diff(B, V ′, V)
8: if A1 = ∅ AND A2 = ∅ AND B1 = ∅ AND B2 6= ∅ AND ∀E ∈ B2 :

IsPropertyRestriction(E) AND B2 ⊆ C1 then

9: P := B2

10: end if

11: end if

12: end for

13: end for

14: Return P

Fig. 12. Algorithm for Recognizing Pull-Up Property.

23

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Algorithm: Recognize-Unidirectional2Bidirectional(Ontology version V , Ontology
version V ′)
Input: Ontology versions V and V ′
Output: The class B with the added reference

1: E = ⊥
2: for all classes B and B′ in version V and V ′ that are different do
3: for all classes A and A′ do

4: CA := Common(A, V, V ′)
5: A1 := Diff(A, V, V ′) AND A2 := Diff(A, V ′, V) AND
6: B1 := Diff(B, V, V ′) AND B2 := Diff(B, V ′, V)
7: if A1 = ∅ AND A2 = ∅ AND B2 = ∅ AND |B1| = 1 then

8: B1 ∈ B1:
9: if IsObjectPropertyRestriction(B1) then
10: RC := ExtractReferenceClasses(B1, V ′)
11: if |RC| = 1 AND ∃RC ∈ RC : RC ≡ A′ then

12: ∃C ∈ CA

13: RC2 = ExtractReferenceClasses(C, V)
14: if |RC2| = 1 AND ∃RC2 ∈ RC2 : RC2 ≡ B AND

IsInversePropertyInRestriction(C,B1) then

15: E := B

16: end if

17: end if

18: end if

19: end if

20: end for

21: end for

22: Return E

Fig. 13. Algorithm for Recognizing Unidirectional to Bidirectional Reference.

24

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

the recognition of Unidirectional to Bidirectional Reference in Fig. 13. The con-
ditions to compare the versions are the same.

Change Cardinality The pattern Cardinality Change compares changes of
cardinalities in property restrictions for classes in version V with classes from
version V ′. The recognition is described in Fig. 14. The differences are computed
in line 3. There is exactly one class expression added and one removed from C

to C′ (line 4). Both of these class expressions must be property restrictions with
cardinalities (line 7). We have to use some API operations to test whether it
is datatype or an object property restriction (lines 8 and 10). In case of object
properties, besides the property name we also require the equivalence of the
referenced class to avoid meaningless comparisons.

A change of the cardinality restriction leads to either a more general or a
more specific property restriction. This is checked in both cases by comparing
the subsumption of the class expressions (property restrictions with cardinality)
D1 ⊏ D2 or D2 ⊏ D1 (line 8 or 13).

Algorithm: Recognize-CardinalityChange(Ontology version V , Ontology version V ′)
Input: Ontology versions V and V ′
Output: Class E with changed cardinality restriction

1: E := ⊥
2: for all classes C and C′ that are different in version V and V ′ do
3: D1 := Diff(C, V, V ′) AND D2 := Diff(C, V ′, V)
4: if |D1| = 1 AND |D2| = 1 then

5: D1 ∈ D1

6: D2 ∈ D2:
7: if IsCardinalityRestriction(D1) AND IsCardinalityRestriction(D2) then
8: if IsDataTypeRestriction(D1) AND IsDataTypeRestriction(D2) AND

SameProperty(D1, D2) AND (D1 ⊏ D2 OR D2 ⊏ D1) then

9: E := C′
10: else if IsObjectPropertyRestriction(D1) AND

IsObjectPropertyRestriction(D2) AND SameProperty(D1, D2) then

11: RC1 := ExtractReferencedClasses(D1, V ′)
12: RC2 := ExtractReferencedClasses(D2, V)
13: if RC1 = RC2 AND (D1 ⊏ D2 OR D2 ⊏ D1) then

14: E := C′
15: end if

16: end if

17: end if

18: end if

19: end for

20: Return E

Fig. 14. Algorithm for Recognizing Cardinality Change.

25

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

9 Evaluation and Discussion

Analysis: We evaluated refactorings for the described refactoring patterns on
two ontologies with different sizes. The DOLCE Lite Plus ontology2 is the smaller
ontology with an average version size of 240 classes and 360 subclass axioms.
For each pattern, 8 concrete refactorings were applied. The second ontology is
a bio-medical ontology OBI3 with an average size of 1200 classes, 1700 subclass
axioms, and 14 concrete refactorings for each pattern. For both ontologies, we
changed the original ontology V by adding and deleting classes, properties and
axioms according to the pattern description and applied our approach to recog-
nize the refactorings. All recognized refactorings were correctly recognized. The
performance result is depicted in Table 1.

No. Refactoring Recognition (Avg. 240) Recognition (Avg. 1200)
Avg.[msec] Max.[msec] Avg.[msec] Max.[msec]

1. Extract Class 493 605 2050 2520
2. Extract Subclass 412 480 1910 2430
3. Extract Superclass 473 580 1860 2540
4. Collapse Hierarchy 1062 1154 2260 2480
5. Extract Hierarchy 886 1042 2170 2410
6. Inline Class 1042 1075 2330 2590

7. Move Attribute 1085 1240 2680 3230
8. Pull-Up Attribute 864 1065 2150 2840
9. Push-Down Attribute 840 957 2820 3360

10. Unidirectional 1170 1254 1820 2140
to bidirectional Ref.

11. Bidirectional 1135 1174 1950 2280
to unidirectional Ref.

12. Cardinality Change 1180 1265 1740 1870

Table 1. Analyzed Refactoring Patterns.

For the evaluation, we used the Pellet 2.0.0 reasoner in Java 1.6 on a computer
with 2.5 GHz CPU and 2 GB RAM. In Table 1 only the time for the recognition
is displayed. The time for matching and merging the ontologies (first step of the
comparison) is on average 570 msec for the models with about 240 classes and
2900 msec for models with an average size of 1200 classes.

Limitations We identified the following limitations that are further chal-
lenges for future work. (i) The refactoring patterns are adopted from existing
work on ontology evolution (cf. [3]), but also on object-oriented modeling (cf. [2]).
Therefore, we only recognize those elementary ontology changes that are speci-
fied in the refactoring recognition. However, there might be a couple of further

2 http://www.loa-cnr.it/DOLCE.html
3 http://obi-ontology.org/page/Main Page

26

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

ontology changes that are not considered in our approach. For instance, we do
not consider changes of the property range yet which would lead to difficulties
in the current approach in the merging step of the ontology versions due to the
applied axiom generalization (cf. Sect. 7). (ii) We need a language restriction as
described in Definition 1 and reduction according to Definition 2. Otherwise, we
can not ensure the recognition.

Lessons Learned Although the proposed semantic comparison between
classes of different versions is the main benefit of our approach, the comparison
is rather a structural-semantic comparison than a purely semantical compari-
son. The Diff- and Common-Algorithms iterate and compare class expressions
that are either superclasses or property restrictions which is a structural class
comparison. The algorithms work properly even for more expressive OWL lan-
guages that do not satisfy the restrictions and reductions. However, we need
these restrictions in order to guarantee a correct recognition.

10 Related Work

We group the related work into three categories. Firstly, the syntactical compar-
isons are analyzed, including also syntactical comparison of RDF triples. Sec-
ondly, related work on structural comparisons is presented. Finally, we consider
OWL reasoning for ontology comparison.

The detection of changes of RDF knowledge bases is considered in [14]. High-
level changes of RDF-graphs and version differences (RDF triples) are repre-
sented and detected in [5]. They categorize elementary changes like add and
delete operations to high-level changes which are similar to refactoring patterns.
Basically, they analyze the difference of RDF-triples of two RDF-graphs instead
of OWL ontologies and the detection is based on a (syntactical) triple compar-
ison, i.e. the high-level change is detected if all its required low-level changes
(RDF-triples) are recognized.

Related work on ontology mappings and the computation of structural differ-
ences between OWL ontologies is given in [7, 15, 16]. In [7] a fix-point algorithm
is used for comparing and mapping related classes and properties based on their
names and structure (references to other entities) A heuristic matching is ap-
plied to detect structural differences. Benefits of the heuristics are mainly the
identification of related classes and properties if their names have changed.

A framework for tracking ontology changes is introduced in [17]. It is realized
as a plug-in for Protégé [18] that creates a change and annotation ontology to
record the changes and meta information on changes. This change ontology is
used to display the applied changes to the user. Similarly, change logs are used
to manage different ontology versions in [1]. The change logs are realized by a
version ontology that represents instances for each class, property and individual
of the analyzed ontology. The usage of version ontologies (meta ontology) for
change representation is also proposed in [19].

More closely related to our work are the approaches on DL reasoning ap-
plying semantic comparison for versioning and ontology changes in OWL. OWL
ontology evolution is analyzed in [20]. However, the focus of this work is not

27

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

on detecting changes. They tackle inconsistency detection caused by (already
detected) changes and in case of an inconsistency, additional changes are gener-
ated to result again in a consistent ontology. In [9] and [21] OWL reasoning on
modular ontologies is considered in order to tackle the problem of consistency
on mappings between ontologies. While the focus in [21] is on reasoning for con-
sistency of ontology mappings and different from our work, in [9] the problem of
consistency management for ontology modules is considered. The ontology mod-
ules are connected by conjunctive queries instead of merging based on syntactic
matching as in our work. Although, subsumption checking is used to compare
classes of versions, a classification and especially a recognition of refactoring
pattern or complex changes is missing. The main difference to the related work
on semantic comparison is the ability of our approach on recognizing ontology
refactoring patterns based on change operations in OWL ontologies.

11 Conclusion and Future Work

In this paper, we have demonstrated a structural-semantic comparison approach
to recognize specified refactoring patterns using standard DL reasoning. We pro-
vide technical information on the version comparison and recognition algorithms.
One can apply the results of this work for schema versioning, semantic differ-
ence and conflict detection. Additionally, it paves the way for application of
reasoning technologies in change prediction of ontologies as well as for guidance
in versioning and evolution of ontologies. In future, we plan to cover additional
refactoring patterns and plan to extend our approach by a heuristic mapping
between classes and properties to handle name changes.

References

1. Plessers, P., Troyer, O.D.: Ontology Change Detection Using a Version Log. In:
Proc. of the 4th Int. Semantic Web Conference, Springer LNCS (2005) 578–592

2. Fowler, M., Beck, K., Brant, J., Opdyke, W.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley (1999)

3. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology
Evolution Management. In: EKAW. Volume 2473 of LNCS. (2002) 285–300

4. Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology Versioning and
Change Detection on the Web. In: EKAW. Volume 2473 of LNCS., Springer (2002)
197–212

5. Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On
Detecting High-Level Changes in RDF/S KBs. In: Proc. of ISWC. Volume 5823
of LNCS., Springer (2009) 473–488

6. Noy, N.F., Kunnatur, S., Klein, M.C.A., Musen, M.A.: Tracking Changes During
Ontology Evolution. In: Proc. of ISWC. Volume 3298 of LNCS., Springer (2004)
259–273

7. Noy, N.F., Musen, M.A.: PROMPTDIFF: A Fixed-Point Algorithm for Comparing
Ontology Versions. In: AAAI/IAAI. (2002) 744–750

8. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In:
AAAI. (2007) 1408–1413

28

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

9. Stuckenschmidt, H., Klein, M.: Reasoning and Change Management in Modular
Ontologies. Data & Knowledge Engineering 63(2) (2007) 200–223

10. Horrocks, I., Patel-Schneider, P.F., Harmelen, F.V.: From SHIQ and RDF to OWL:
The Making of a Web Ontology Language. J. of Web Semantics 1 (2003) 7–26

11. Alexander, C.: A Pattern Language. Towns, Buildings, Construction. Oxford
University Press, New York (1977)

12. Teege, G.: Making the Difference: A subtraction Operation for Description Logics.
In: Proc. of the 4th Int. Conf. on Knowledge Representation (KR’94). 540–550

13. The OWL API - http://owlapi.sourceforge.net. (2010)
14. Zeginis, D., Tzitzikas, Y., Christophides, V.: On the foundations of computing

deltas between rdf models. Proc. of ISWC/ASWC 4825 (2007) 637–651
15. Klein, M., Noy, N.: A component-based framework for ontology evolution. In:

Proc. of the IJCAI-03 Workshop on Ontologies and Distributed Systems, CEUR-
WS. Volume 71., Citeseer (2003)

16. Ritze, D., Meilicke, C., Sváb-Zamazal, O., Stuckenschmidt, H.: A Pattern-based
Ontology Matching Approach for Detecting Complex Correspondences. In: Proc.
of Int. Workshop on Ontology Matching (OM). (2009)

17. Noy, N., Chugh, A., Liu, W., Musen, M.: A framework for ontology evolution in
collaborative environments. Proc. of ISWC 4273 (2006) 544–558

18. Protégé - Ontology Editor - http://protege.stanford.edu. (2010)
19. Palma, R., Haase, P., Wang, Y., dAquin, M.: D1.3.1 Propagation Models and

Strategies. Technical report, NeOn Project Deliverable 1.3.1 (207)
20. Haase, P., Stojanovic, L.: Consistent Evolution of OWL Ontologies. In: ESWC.

Volume 3532 of LNCS., Springer (2005) 182–197
21. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning Support for Mapping

Revision. J. Log. Comput. 19(5) (2009) 807–829

29

Categorization and Recognition of Ontology Refactoring Pattern, Fachbereich Informatik Nr. 9/2010

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz-landau.de/koblenz/fb4/publications/Reports/arbeitsberichte)

Gerd Gröner, Steffen Staab, Categorization and Recognition of Ontology Refactoring Pattern,
Arbeitsberichte aus dem Fachbereich Informatik 9/2010

Daniel Eißing, Ansgar Scherp, Carsten Saathoff, Integration of Existing Multimedia Metadata
Formats and Metadata Standards in the M3O, Arbeitsberichte aus dem Fachbereich
Informatik 8/2010

Stefan Scheglmann, Ansgar Scherp, Steffen Staab, Model-driven Generation of APIs for
OWL-based Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 7/2010

Daniel Schmeiß, Ansgar Scherp, Steffen Staab, Integrated Mobile Visualization and
Interaction of Events and POIs, Arbeitsberichte aus dem Fachbereich Informatik 6/2010

Rüdiger Grimm, Daniel Pähler, E-Mail-Forensik – IP-Adressen und ihre Zuordnung zu
Internet-Teilnehmern und ihren Standorten, Arbeitsberichte aus dem Fachbereich Informatik
5/2010

Christoph Ringelstein, Steffen Staab, PAPEL: Syntax and Semantics for Provenance-Aware
Policy Definition, Arbeitsberichte aus dem Fachbereich Informatik 4/2010

Nadine Lindermann, Sylvia Valcárcel, Harald F.O. von Kortzfleisch, Ein Stufenmodell für
kollaborative offene Innovationsprozesse in Netzwerken kleiner und mittlerer Unternehmen
mit Web 2.0, Arbeitsberichte aus dem Fachbereich Informatik 3/2010

Maria Wimmer, Dagmar Lück-Schneider, Uwe Brinkhoff, Erich Schweighofer, Siegfried
Kaiser, Andreas Wieber, Fachtagung Verwaltungsinformatik FTVI Fachtagung
Rechtsinformatik FTRI 2010, Arbeitsberichte aus dem Fachbereich Informatik 2/2010

Max Braun, Ansgar Scherp, Steffen Staab, Collaborative Creation of Semantic Points of
Interest as Linked Data on the Mobile Phone, Arbeitsberichte aus dem Fachbereich Informatik
1/2010

Marc Santos, Einsatz von „Shared In-situ Problem Solving“ Annotationen in kollaborativen
Lern- und Arbeitsszenarien, Arbeitsberichte aus dem Fachbereich Informatik 20/2009

Carsten Saathoff, Ansgar Scherp, Unlocking the Semantics of Multimedia Presentations in
the Web with the Multimedia Metadata Ontology, Arbeitsberichte aus dem Fachbereich
Informatik 19/2009

Christoph Kahle, Mario Schaarschmidt, Harald F.O. von Kortzfleisch, Open Innovation:
Kundenintegration am Beispiel von IPTV, Arbeitsberichte aus dem Fachbereich Informatik
18/2009

Dietrich Paulus, Lutz Priese, Peter Decker, Frank Schmitt, Pose-Tracking Forschungsbericht,
Arbeitsberichte aus dem Fachbereich Informatik 17/2009

Andreas Fuhr, Tassilo Horn, Andreas Winter, Model-Driven Software Migration Extending
SOMA, Arbeitsberichte aus dem Fachbereich Informatik 16/2009

Eckhard Großmann, Sascha Strauß, Tassilo Horn, Volker Riediger, Abbildung von grUML
nach XSD soamig, Arbeitsberichte aus dem Fachbereich Informatik 15/2009

Kerstin Falkowski, Jürgen Ebert, The STOR Component System Interim Report,
Arbeitsberichte aus dem Fachbereicht Informatik 14/2009

Sebastian Magnus, Markus Maron, An Empirical Study to Evaluate the Location of
Advertisement Panels by Using a Mobile Marketing Tool, Arbeitsberichte aus dem
Fachbereich Informatik 13/2009

Sebastian Magnus, Markus Maron, Konzept einer Public Key Infrastruktur in iCity,
Arbeitsberichte aus dem Fachbereich Informatik 12/2009

Sebastian Magnus, Markus Maron, A Public Key Infrastructure in Ambient Information and
Transaction Systems, Arbeitsberichte aus dem Fachbereich Informatik 11/2009

Ammar Mohammed, Ulrich Furbach, Multi-agent systems: Modeling and Virification using
Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik 10/2009

Andreas Sprotte, Performance Measurement auf der Basis von Kennzahlen aus betrieblichen
Anwendungssystemen: Entwurf eines kennzahlengestützten Informationssystems für einen
Logistikdienstleister, Arbeitsberichte aus dem Fachbereich Informatik 9/2009

Gwendolin Garbe, Tobias Hausen, Process Commodities: Entwicklung eines
Reifegradmodells als Basis für Outsourcingentscheidungen, Arbeitsberichte aus dem
Fachbereich Informatik 8/2009

Petra Schubert et. al., Open-Source-Software für das Enterprise Resource Planning,
Arbeitsberichte aus dem Fachbereich Informatik 7/2009

Ammar Mohammed, Frieder Stolzenburg, Using Constraint Logic Programming for Modeling
and Verifying Hierarchical Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik
6/2009

Tobias Kippert, Anastasia Meletiadou, Rüdiger Grimm, Entwurf eines Common Criteria-
Schutzprofils für Router zur Abwehr von Online-Überwachung, Arbeitsberichte aus dem
Fachbereich Informatik 5/2009

Hannes Schwarz, Jürgen Ebert, Andreas Winter, Graph-based Traceability – A
Comprehensive Approach. Arbeitsberichte aus dem Fachbereich Informatik 4/2009

Anastasia Meletiadou, Simone Müller, Rüdiger Grimm, Anforderungsanalyse für Risk-
Management-Informationssysteme (RMIS), Arbeitsberichte aus dem Fachbereich Informatik
3/2009

Ansgar Scherp, Thomas Franz, Carsten Saathoff, Steffen Staab, A Model of Events based on
a Foundational Ontology, Arbeitsberichte aus dem Fachbereich Informatik 2/2009

Frank Bohdanovicz, Harald Dickel, Christoph Steigner, Avoidance of Routing Loops,
Arbeitsberichte aus dem Fachbereich Informatik 1/2009

Stefan Ameling, Stephan Wirth, Dietrich Paulus, Methods for Polyp Detection in Colonoscopy
Videos: A Review, Arbeitsberichte aus dem Fachbereich Informatik 14/2008

Tassilo Horn, Jürgen Ebert, Ein Referenzschema für die Sprachen der IEC 61131-3,
Arbeitsberichte aus dem Fachbereich Informatik 13/2008

Thomas Franz, Ansgar Scherp, Steffen Staab, Does a Semantic Web Facilitate Your Daily
Tasks?, Arbeitsberichte aus dem Fachbereich Informatik 12/2008

Norbert Frick, Künftige Anfordeungen an ERP-Systeme: Deutsche Anbieter im Fokus,
Arbeitsberichte aus dem Fachbereicht Informatik 11/2008

Jürgen Ebert, Rüdiger Grimm, Alexander Hug, Lehramtsbezogene Bachelor- und
Masterstudiengänge im Fach Informatik an der Universität Koblenz-Landau, Campus
Koblenz, Arbeitsberichte aus dem Fachbereich Informatik 10/2008

Mario Schaarschmidt, Harald von Kortzfleisch, Social Networking Platforms as Creativity
Fostering Systems: Research Model and Exploratory Study, Arbeitsberichte aus dem
Fachbereich Informatik 9/2008

Bernhard Schueler, Sergej Sizov, Steffen Staab, Querying for Meta Knowledge,
Arbeitsberichte aus dem Fachbereich Informatik 8/2008

Stefan Stein, Entwicklung einer Architektur für komplexe kontextbezogene Dienste im
mobilen Umfeld, Arbeitsberichte aus dem Fachbereich Informatik 7/2008

Matthias Bohnen, Lina Brühl, Sebastian Bzdak, RoboCup 2008 Mixed Reality League Team
Description, Arbeitsberichte aus dem Fachbereich Informatik 6/2008

Bernhard Beckert, Reiner Hähnle, Tests and Proofs: Papers Presented at the Second
International Conference, TAP 2008, Prato, Italy, April 2008, Arbeitsberichte aus dem
Fachbereich Informatik 5/2008

Klaas Dellschaft, Steffen Staab, Unterstützung und Dokumentation kollaborativer Entwurfs-
und Entscheidungsprozesse, Arbeitsberichte aus dem Fachbereich Informatik 4/2008

Rüdiger Grimm: IT-Sicherheitsmodelle, Arbeitsberichte aus dem Fachbereich Informatik
3/2008

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik 2/2008

Markus Maron, Kevin Read, Michael Schulze: CAMPUS NEWS – Artificial Intelligence
Methods Combined for an Intelligent Information Network, Arbeitsberichte aus dem
Fachbereich Informatik 1/2008

Lutz Priese,Frank Schmitt, Patrick Sturm, Haojun Wang: BMBF-Verbundprojekt 3D-RETISEG
Abschlussbericht des Labors Bilderkennen der Universität Koblenz-Landau, Arbeitsberichte
aus dem Fachbereich Informatik 26/2007

Stephan Philippi, Alexander Pinl: Proceedings 14. Workshop 20.-21. September 2007
Algorithmen und Werkzeuge für Petrinetze, Arbeitsberichte aus dem Fachbereich Informatik
25/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS – an Intelligent Bluetooth-
based Mobile Information Network, Arbeitsberichte aus dem Fachbereich Informatik 24/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS - an Information Network for
Pervasive Universities, Arbeitsberichte aus dem Fachbereich Informatik 23/2007

Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version,
Arbeitsberichte aus dem Fachbereich Informatik 22/2007

Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularität als alternative Technologie-
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007

Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem
Fachbereich Informatik 20/2007

Rüdiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pähler, Ilka Uerz: SOA-Security,
Arbeitsberichte aus dem Fachbereich Informatik 19/2007

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007

Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

„Gelbe Reihe“
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' –
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_WeST
	Impressum
	TR072010
	Bisher erschienen
	Bisher erschienen

