Refine
Year of publication
Document Type
- Doctoral Thesis (475) (remove)
Language
- English (249)
- German (224)
- Multiple languages (1)
- Spanish (1)
Keywords
- Pestizid (8)
- Pflanzenschutzmittel (8)
- Führung (6)
- Inklusion (6)
- Grundwasserfauna (5)
- Landwirtschaft (5)
- Modellierung (4)
- Persönlichkeit (4)
- Software Engineering (4)
- Unterrichtsforschung (4)
Institute
- Fachbereich 7 (93)
- Fachbereich 8 (47)
- Institut für Informatik (35)
- Institut für Integrierte Naturwissenschaften, Abt. Biologie (29)
- Institut für Umweltwissenschaften (23)
- Institut für Integrierte Naturwissenschaften, Abt. Chemie (22)
- Fachbereich 5 (20)
- Institut für Computervisualistik (18)
- Institut für Integrierte Naturwissenschaften, Abt. Physik (13)
- Institut für Wirtschafts- und Verwaltungsinformatik (13)
Within the field of Business Process Management, business rules are commonly used to model company decision logic and govern allowed company behavior. An exemplary business rule in the financial sector could be for example:
”A customer with a mental condition is not creditworthy”. Business rules are
usually created and maintained collaboratively and over time. In this setting,
modelling errors can occur frequently. A challenging problem in this context is
that of inconsistency, i.e., contradictory rules which cannot hold at the same
time. For instance, regarding the exemplary rule above, an inconsistency would
arise if a (second) modeller entered an additional rule: ”A customer with a mental condition is always creditworthy”, as the two rules cannot hold at the same
time. In this thesis, we investigate how to handle such inconsistencies in business
rule bases. In particular, we develop methods and techniques for the detection,
analysis and resolution of inconsistencies in business rule bases