Refine
Year of publication
Document Type
- Doctoral Thesis (476) (remove)
Language
- English (249)
- German (225)
- Multiple languages (1)
- Spanish (1)
Keywords
- Pestizid (8)
- Pflanzenschutzmittel (8)
- Führung (6)
- Inklusion (6)
- Grundwasserfauna (5)
- Landwirtschaft (5)
- Modellierung (4)
- Persönlichkeit (4)
- Software Engineering (4)
- Unterrichtsforschung (4)
Institute
- Fachbereich 7 (93)
- Fachbereich 8 (47)
- Institut für Informatik (35)
- Institut für Integrierte Naturwissenschaften, Abt. Biologie (29)
- Institut für Umweltwissenschaften (23)
- Institut für Integrierte Naturwissenschaften, Abt. Chemie (22)
- Fachbereich 5 (20)
- Institut für Computervisualistik (18)
- Institut für Integrierte Naturwissenschaften, Abt. Physik (13)
- Institut für Pädagogik, Abteilung Pädagogik (13)
A fundamental understanding of attachment of engineered nanoparticles to environmentalrnsurfaces is essential for the prediction of nanoparticle fate and transport in the environment.
The present work investigates the attachment of non-coated silver nanoparticles and citraterncoated silver nanoparticles to different model surfaces and environmental surfaces in thernpresence and absence of humic acid. Batch sorption experiments were used for this investigation.
The objective of this thesis was to investigate how silver nanoparticles interactrnwith surfaces having different chemical functional groups. The effect of presence of HA, on the particle-surface interactions was also investigated. In the absence of humic acid, nanoparticle-surface interactions or attachment was influencedrnby the chemical nature of the interacting surfaces. On the other hand, in the presence ofrnhumic acid, nanoparticle-surface attachment was influenced by the specific surface area of the sorbent surfaces. The sorption of non-coated silver nanoparticles and citrate coatedrnnanoparticles to all the surfaces was nonlinear and best described by Langmuir isotherm, indicating monolayer sorption of nanoparticles on to the surfaces. This can be explained as due to the blocking effect generated by the particle-particle repulsion. In the presence of humic acid, sorption of nanoparticles to the surfaces was linear. When the humic acid was present in the interacting medium, both the nanoparticles and surfaces were getting coated with humic acid and this masks the chemical functionalities of the surfaces. This leads to the change in particle-surface interactions, in the presence of humic acid. For the silver nanoparticle sorption from an unstable suspension, the sorption isotherms did not follow any classical sorption models, suggesting interplay between aggregation and sorption. Citrate coated silver nanoparticles and humic acid coated silver nanoparticles showed arndepression in sorption compared to the sorption of non-coated silver nanoparticles. In therncase of citrate coated silver nanoparticles the decrease in sorption can be explained by thernmore negative zeta potential of citrate coated nanoparticles compared to non-coated ones. For humic acid coated nanoparticles the sorption depression can be due to the steric hindrance caused by the free humic acid molecules which may coat the sorbent surface or due to the competition for sorption sites between the nanoparticle and free humic acid molecules present in the suspension. Thus nanoparticle surface chemistry is an important factor that determines the attachment of nanoparticles towards surfaces and it makes the characterization of nanoparticle surface an essential step in the study of their fate in the environment.
Another aim of this study was to introduce the potential of chemical force microscopy for nanoparticle surface characterization. With the use of this technique, it was possible to distinguish between bare silver nanoparticles, citrate coated silver nanoparticles, and humic acid coated silver nanoparticles. This was possible by measuring the adhesion forces between the nanoparticles and five different AFM probes having different chemical functionalization.