Refine
Year of publication
Document Type
- Doctoral Thesis (476) (remove)
Language
- English (249)
- German (225)
- Multiple languages (1)
- Spanish (1)
Keywords
- Pestizid (8)
- Pflanzenschutzmittel (8)
- Führung (6)
- Inklusion (6)
- Grundwasserfauna (5)
- Landwirtschaft (5)
- Modellierung (4)
- Persönlichkeit (4)
- Software Engineering (4)
- Unterrichtsforschung (4)
Institute
- Fachbereich 7 (93)
- Fachbereich 8 (47)
- Institut für Informatik (35)
- Institut für Integrierte Naturwissenschaften, Abt. Biologie (29)
- Institut für Umweltwissenschaften (23)
- Institut für Integrierte Naturwissenschaften, Abt. Chemie (22)
- Fachbereich 5 (20)
- Institut für Computervisualistik (18)
- Institut für Integrierte Naturwissenschaften, Abt. Physik (13)
- Institut für Pädagogik, Abteilung Pädagogik (13)
Leaf litter breakdown is a fundamental process in aquatic ecosystems, being mainly mediated by decomposer-detritivore systems that are composed of microbial decomposers and leaf-shredding, detritivorous invertebrates. The ecological integrity of these systems can, however, be disturbed, amongst others, by chemical stressors. Fungicides might pose a particular risk as they can have negative effects on the involved microbial decomposers but may also affect shredders via both waterborne toxicity and their diet; the latter by toxic effects due to dietary exposure as a result of fungicides’ accumulation on leaf material and by negatively affecting fungal leaf decomposers, on which shredders’ nutrition heavily relies. The primary aim of this thesis was therefore to provide an in-depth assessment of the ecotoxicological implications of fungicides in a model decomposer-detritivore system using a tiered experimental approach to investigate (1) waterborne toxicity in a model shredder, i.e., Gammarus fossarum, (2) structural and functional implications in leaf-associated microbial communities, and (3) the relative importance of waterborne and diet-related effects for the model shredder.
Additionally, knowledge gaps were tackled that were related to potential differences in the ecotoxicological impact of inorganic (also authorized for organic farming in large parts of the world) and organic fungicides, the mixture toxicity of these substances, the field-relevance of their effects, and the appropriateness of current environmental risk assessment (ERA).
In the course of this thesis, major differences in the effects of inorganic and organic fungicides on the model decomposer-detritivore system were uncovered; e.g., the palatability of leaves for G. fossarum was increased by inorganic fungicides but deteriorated by organic substances. Furthermore, non-additive action of fungicides was observed, rendering mixture effects of these substances hardly predictable. While the relative importance of the waterborne and diet-related effect pathway for the model shredder seems to depend on the fungicide group and the exposure concentration, it was demonstrated that neither path must be ignored due to additive action. Finally, it was shown that effects can be expected at field-relevant fungicide levels and that current ERA may provide insufficient protection for decomposer-detritivore systems. To safeguard aquatic ecosystem functioning, this thesis thus recommends including leaf-associated microbial communities and long-term feeding studies using detritus feeders in ERA testing schemes, and identifies several knowledge gaps whose filling seems mandatory to develop further reasonable refinements for fungicide ERA.