Refine
Year of publication
Document Type
- Study Thesis (138) (remove)
Keywords
- Robotik (9)
- Bildverarbeitung (5)
- Computergraphik (4)
- Computersimulation (4)
- VNUML (4)
- Augmented Reality (3)
- Mustererkennung (3)
- Netzwerksimulation (3)
- SPARQL (3)
- Semantic Web (3)
Institute
- Institut für Computervisualistik (76)
- Institut für Informatik (19)
- Institut für Softwaretechnik (13)
- Institut für Wirtschafts- und Verwaltungsinformatik (12)
- Fachbereich 4 (9)
- Institute for Web Science and Technologies (5)
- Institut für Integrierte Naturwissenschaften (3)
- An-Institute (1)
- Institut für Kulturwissenschaft (1)
Das sichere Befahren von komplexen und unstruktierten Umgebungen durch autonome Roboter ist seit den Anfängen der Robotik ein Problem und bis heute eine Herausforderung geblieben. In dieser Studienarbeit werden drei Verfahren basierend auf 3-D-Laserscans, Höhenvarianz, der Principle Component Analysis (PCA) und Tiefenbildverarbeitung vorgestellt, die es Robotern ermöglichen, das sie umgebende Terrain zu klassifizieren und die Befahrbarkeit zu bewerten, sodass eine sichere Navigation auch in Bereichen möglich wird, die mit reinen 2-D-Laserscannern nicht sicher befahren werden können. Hierzu werden 3-D-Laserscans mit einem 2-D-Laserscanner erstellt, der auf einer Roll-Tilt-Einheit basierend auf Servos montiert ist, und gleichzeitig auch zur Kartierung und Navigation eingesetzt wird. Die einzeln aufgenommenen 2-D-Scans werden dann anhand des Bewegungsmodells der Roll-Tilt-Einheit in ein emeinsames 3-D-Koordinatensystem transformiert und mit für die 3-D-Punktwolkenerarbeitung üblichen Datenstrukturen (Gittern, etc.) und den o.g. Methoden klassifiziert. Die Verwendung von Servos zur Bewegung des 2-D-Scanners erfordert außerdem eine Kalibrierung und Genauigkeitsbetrachtung derselben, um zuverlässige Ergebnisse zu erzielen und Aussagen über die Qualität der 3-D-Scans treffen zu können. Als Ergebnis liegen drei Implementierungen vor, welche evolutionär entstanden sind. Das beschriebene Höhenvarianz-Verfahren wurde im Laufe dieser Studienarbeit von einem Principle Component Analysis basierten Verfahren, das bessere Ergebnisse insbesondere bei schrägen Untergründen und geringer Punktdichte bringt, abgelöst. Die Verfahren arbeiten beide zuverlässig, sind jedoch natürlich stark von der Genauigkeit der zur Erstellung der Scans verwendeten Hardware abhängig, die oft für Fehlklassifikationen verantwortlich war. Die zum Schluss entwickelte Tiefenbildverarbeitung zielt darauf ab, Abgründe zu erkennen und tut dies bei entsprechender Erkennbarkeit des Abgrunds im Tiefenbild auch zuverlässig.