Refine
Year of publication
Document Type
- Part of Periodical (38)
- Doctoral Thesis (31)
- Diploma Thesis (24)
- Study Thesis (19)
- Bachelor Thesis (14)
- Master's Thesis (14)
- Report (1)
Keywords
- Routing (5)
- Bluetooth (4)
- Knowledge Compilation (4)
- Netzwerk (4)
- Semantic Web (4)
- Software Engineering (4)
- VNUML (4)
- E-KRHyper (3)
- Netzwerksimulation (3)
- RIP-MTI (3)
Institute
- Institut für Informatik (141) (remove)
The aim of this work was to present the accident and traffic modeling of Oman (Muskat City) under theoretical assumptions by means of agent-based simulation. TRASS should be taken as the basis for the simulation environment. In addition, possible counter-measures should be proposed with regard to the high accident rate, which result from different simulation variants.
It was not part of this work whether the theoretical assumptions by the simulation should actually be applied and implemented in reality.
It was also necessary to check whether three different simulation variants could be represented differently by TRASS. The three variants were divided into simulation sequence with traffic light control, without traffic light control and finally with traffic light control, which however should be ignored with a probability of 70%. All three variants could produce different results. It has been shown that all three variants have advantages and disadvantages with respect to traffic flow and accident rate.
Not to be neglected is the fact that this work is modeled, analyzed and evaluated exclusively with TRASS framework. All potentials and deficits thus flow into the overall framework of this work. Therefore, after critical observation, this statement was viewed from a single angle only: the theoretical assumptions of Oman and the modeling limits of TRASS. In order to be able to make a promising statement about the actual implementation of the proposals, further comprehensive analyzes and simulations are necessary in a much wider range of variants of transport for Oman.
The aim of this thesis was to develop and to evaluate a method, which enables the utilization of traditional dialog marketing tools through the web. For this purpose, a prototype of a website with "extended real-time interaction (eEI)" capabilities has been implemented and tested. The prototype was evaluated by a methodology based on the five-dimensional "e-service quality" measure after Gwo-Guang Lee und Hsiu-Fen Lin. The Foundation of the "e-service quality" measure is the SERVQUAL-Model. A statistical analysis of the user study results showed a significant correlation between eEI and user satisfaction. Before the actual realization of eEI, the "Technology Acceptance Model" after Fred D. Davis was used to investigate currently used real-time interaction systems.
Reactive local algorithms are distributed algorithms which suit the needs of battery-powered, large-scale wireless ad hoc and sensor networks particularly well. By avoiding both unnecessary wireless transmissions and proactive maintenance of neighborhood tables (i.e., beaconing), such algorithms minimize communication load and overhead, and scale well with increasing network size. This way, resources such as bandwidth and energy are saved, and the probability of message collisions is reduced, which leads to an increase in the packet reception ratio and a decrease of latencies.
Currently, the two main application areas of this algorithm type are geographic routing and topology control, in particular the construction of a node's adjacency in a connected, planar representation of the network graph. Geographic routing enables wireless multi-hop communication in the absence of any network infrastructure, based on geographic node positions. The construction of planar topologies is a requirement for efficient, local solutions for a variety of algorithmic problems.
This thesis contributes to reactive algorithm research in two ways, on an abstract level, as well as by the introduction of novel algorithms:
For the very first time, reactive algorithms are considered as a whole and as an individual research area. A comprehensive survey of the literature is given which lists and classifies known algorithms, techniques, and application domains. Moreover, the mathematical concept of O- and Omega-reactive local topology control is introduced. This concept unambiguously distinguishes reactive from conventional, beacon-based, topology control algorithms, serves as a taxonomy for existing and prospective algorithms of this kind, and facilitates in-depth investigations of the principal power of the reactive approach, beyond analysis of concrete algorithms.
Novel reactive local topology control and geographic routing algorithms are introduced under both the unit disk and quasi unit disk graph model. These algorithms compute a node's local view on connected, planar, constant stretch Euclidean and topological spanners of the underlying network graph and route messages reactively on these spanners while guaranteeing the messages' delivery. All previously known algorithms are either not reactive, or do not provide constant Euclidean and topological stretch properties. A particularly important partial result of this work is that the partial Delaunay triangulation (PDT) is a constant stretch Euclidean spanner for the unit disk graph.
To conclude, this thesis provides a basis for structured and substantial research in this field and shows the reactive approach to be a powerful tool for algorithm design in wireless ad hoc and sensor networking.
One of the main goals of the artificial intelligence community is to create machines able to reason with dynamically changing knowledge. To achieve this goal, a multitude of different problems have to be solved, of which many have been addressed in the various sub-disciplines of artificial intelligence, like automated reasoning and machine learning. The thesis at hand focuses on the automated reasoning aspects of these problems and address two of the problems which have to be overcome to reach the afore-mentioned goal, namely 1. the fact that reasoning in logical knowledge bases is intractable and 2. the fact that applying changes to formalized knowledge can easily introduce inconsistencies, which leads to unwanted results in most scenarios.
To ease the intractability of logical reasoning, I suggest to adapt a technique called knowledge compilation, known from propositional logic, to description logic knowledge bases. The basic idea of this technique is to compile the given knowledge base into a normal form which allows to answer queries efficiently. This compilation step is very expensive but has to be performed only once and as soon as the result of this step is used to answer many queries, the expensive compilation step gets worthwhile. In the thesis at hand, I develop a normal form, called linkless normal form, suitable for knowledge compilation for description logic knowledge bases. From a computational point of view, the linkless normal form has very nice properties which are introduced in this thesis.
For the second problem, I focus on changes occurring on the instance level of description logic knowledge bases. I introduce three change operators interesting for these knowledge bases, namely deletion and insertion of assertions as well as repair of inconsistent instance bases. These change operators are defined such that in all three cases, the resulting knowledge base is ensured to be consistent and changes performed to the knowledge base are minimal. This allows us to preserve as much of the original knowledge base as possible. Furthermore, I show how these changes can be applied by using a transformation of the knowledge base.
For both issues I suggest to adapt techniques successfully used in other logics to get promising methods for description logic knowledge bases.
The publication of open source software aims to support the reuse, the distribution and the general utilization of software. This can only be enabled by the correct usage of open source software licenses. Therefore associations provide a multitude of open source software licenses with different features, of which a developer can choose, to regulate the interaction with his software. Those licenses are the core theme of this thesis.
After an extensive literature research, two general research questions are elaborated in detail. First, a license usage analysis of licenses in the open source sector is applied, to identify current trends and statistics. This includes questions concerning the distribution of licenses, the consistency in their usage, their association over a period of time and their publication.
Afterwards the recommendation of licenses for specific projects is investigated. Therefore, a recommendation logic is presented, which includes several influences on a suitable license choice, to generate an at most applicable recommendation. Besides the exact features of a license of which a user can choose, different methods of ranking the recommendation results are proposed. This is based on the examination of the current situation of open source licensing and license suggestion. Finally, the logic is evaluated on the exemplary use-case of the 101companies project.
Die folgende Arbeit zeigt eine Möglichkeit auf, Lokalisierung eines Objektes mittels Ultraschall zu realisieren. Dazu werden drei bis fünf im Raum verteilte Sensoren genutzt, um anhand von Distanzinformationen die Position eines Objekts relativ zu den Positionen der Sensoren zu bestimmen. Eine Besonderheit besteht dabei darin, dass die Sensoren nahezu beliebig in der Ebene verteilt sein können. Ihre Anordnung wird vom System in der Kalibrierungsphase mit Unterstützung des Anwenders ermittelt. Dabei dürften ein gleichseitiges Dreieck, ein Quadrat oder Pentagramm je nach Sensoranzahl die besten Ergebnisse liefern. Um die relative Bewegung in eine Absolute zu übertragen, findet eine Umrechnung in Meter anhand der Taktung der Mikrocontroller, des Prescalers des verwendeten Timers und der Schallgeschwindigkeit statt.
The present thesis deals with the realization of a stepper motor driver on an 8-bit microcontroller by the company Atmel. The focus is on the devel- opment of a current control, which allows microstepping in addition to the basic modes of operation like full- and halfstep. For this purpose, a PI con- troller is derived using physical and control engineering principles, which is implemented on the microcontroller. In this context, essential knowledge for the practical implementation will be discussed. In addition, the development of the hardware is documented, which is of great significance for the current measurement.
The identification of experts for a specific technology or framework produces a large benefit for collaborative software projects. Hence it reduces the communication overhead that is required to identify an expert on the fly. Therefore this thesis describes a tool and approach that can be used to identify an expert that has a specific skill-set. It will mainly focus on the skills and expertise of developers that use the Django framework. By adding more rules to our framework that approach could easily be extended for different technologies or frameworks. The paper will close with a case study on an open source project.
Die Arbeitsgruppe Echtzeitsysteme an der Universität Koblenz beschäftigt sich seit mehreren Jahren mit der Thematik autonomes und assistiertes Fahren. Eine große Herausforderung stellen in diesem Zusammenhang mehrgliedrige Fahrzeuge dar, deren Steuerung für den Fahrer während der Rückwärtsfahrt sehr anspruchsvoll ist. Um präzise Manöver zu ermöglichen, können elektronische Fahrerassistenzsysteme zum Einsatz kommen. Im Rahmen vorhergehender Arbeiten sind bereits einige Prototypen entstanden, von denen jedoch keiner eine geeignete Lösung für moderne, zweiachsige Anhänger darstellt. Im Rahmen dieser Arbeit wurde ein prototypisches Fahrerassistenzsystem entwickelt, wobei es noch weiterer Forschungs- und Entwicklungsarbeit bedarf, um das System straßentauglich zu machen.
Traditional Driver Assistance Systems (DAS) like for example Lane Departure Warning Systems or the well-known Electronic Stability Program have in common that their system and software architecture is static. This means that neither the number and topology of Electronic Control Units (ECUs) nor the presence and functionality of software modules changes after the vehicles leave the factory.
However, some future DAS do face changes at runtime. This is true for example for truck and trailer DAS as their hardware components and software entities are spread over both parts of the combination. These new requirements cannot be faced by state-of-the-art approaches of automotive software systems. Instead, a different technique of designing such Distributed Driver Assistance Systems (DDAS) needs to be developed. The main contribution of this thesis is the development of a novel software and system architecture for dynamically changing DAS using the example of driving assistance for truck and trailer. This architecture has to be able to autonomously detect and handle changes within the topology. In order to do so, the system decides which degree of assistance and which types of HMI can be offered every time a trailer is connected or disconnected. Therefore an analysis of the available software and hardware components as well as a determination of possible assistance functionality and a re-configuration of the system take place. Such adaptation can be granted by the principles of Service-oriented Architecture (SOA). In this architectural style all functionality is encapsulated in self-contained units, so-called Services. These Services offer the functionality through well-defined interfaces whose behavior is described in contracts. Using these Services, large-scale applications can be built and adapted at runtime. This thesis describes the research conducted in achieving the goals described by introducing Service-oriented Architectures into the automotive domain. SOA deals with the high degree of distribution, the demand for re-usability and the heterogeneity of the needed components.
It also applies automatic re-configuration in the event of a system change. Instead of adapting one of the frameworks available to this scenario, the main principles of Service-orientation are picked up and tailored. This leads to the development of the Service-oriented Driver Assistance (SODA) framework, which implements the benefits of Service-orientation while ensuring compatibility and compliance to automotive requirements, best-practices and standards. Within this thesis several state-of-the-art Service-oriented frameworks are analyzed and compared. Furthermore, the SODA framework as well as all its different aspects regarding the automotive software domain are described in detail. These aspects include a well-defined reference model that introduces and relates terms and concepts and defines an architectural blueprint. Furthermore, some of the modules of this blueprint such as the re-configuration module and the Communication Model are presented in full detail. In order to prove the compliance of the framework regarding state-of-the-art automotive software systems, a development process respecting today's best practices in automotive design procedures as well as the integration of SODA into the AUTOSAR standard are discussed. Finally, the SODA framework is used to build a full-scale demonstrator in order to evaluate its performance and efficiency.