• Deutsch
Login

OPUS

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Adams, Elena (1)
  • Ampofo, Ado (1)
  • Berkhoff, Sven (1)
  • Bollmohr, Silke (1)
  • Buchmann, Christian (1)
  • Diehl, Dörte (1)
  • Englert, Dominic (1)
  • Guseva, Sofya (1)
  • Hundt, Matthias (1)
  • Leeb, Christoph (1)
  • Lenhardt, Patrick (1)
  • Liu, Liu (1)
  • Lüderwald, Simon (1)
  • Murniati, Erni (1)
  • Müller, Isabell (1)
  • Ondruch, Pavel (1)
  • Pfister, Sonja C. (1)
  • Schaepe, Volker (1)
  • Schreiber, Benjamin (1)
  • Schreiner, Verena C. (1)
  • Strozynska, Monika (1)
  • Weber, Michael (1)
  • Weiß, Sören Bo (1)
- less

Year of publication

  • 2018 (7)
  • 2017 (4)
  • 2020 (3)
  • 2022 (3)
  • 2009 (2)
  • 2010 (1)
  • 2016 (1)
  • 2019 (1)
  • 2021 (1)

Document Type

  • Doctoral Thesis (23) (remove)

Language

  • English (19)
  • German (4)

Keywords

  • Biodiversität (2)
  • Pestizid (2)
  • 1H-NMR Relaxometry (1)
  • Amphibia (1)
  • Aquatic Ecotoxicology (1)
  • Bedrohte Tiere (1)
  • Benetzung (1)
  • Bestäubung (1)
  • Biodiversity (1)
  • Biogasanlage (1)
+ more

Institute

  • Institut für Umweltwissenschaften (23) (remove)

23 search hits

  • 11 to 20
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
The swelling of interparticulate hydrogels in soil and their contribution to soil structural stability and soil-water interactions (2018)
Buchmann, Christian
Organic substances play an essential role for the formation of stable soil structures. In this context, their physico-chemical properties, interactions with mineral soil constituents and soil-water interactions are particu-larly important. However, the underlying mechanisms contributing to soil particle cementation by swollen or-ganic substances (hydrogels) remains unclear. Up to now, no mechanistic model is available which explains the mechanisms of interparticulate hydrogel swelling and its contribution to soil-water interactions and soil structur-al stability. This mainly results from the lack of appropriate testing methods to study hydrogel swelling in soil as well as from the difficulties of adapting available methods to the system soil/hydrogel. In this thesis, 1H proton nuclear magnetic resonance (NMR) relaxometry was combined with various soil micro- and macrostructural stability testing methods in order to identify the contribution of hydrogel swelling-induced soil-water interactions to the structural stability of water-saturated and unsaturated soils. In the first part, the potentials and limitations of 1H NMR relaxometry to enlighten soil structural stabilization mechanism and vari-ous water populations were investigated. In the second part, 1H-NMR relaxometry was combined with rheologi-cal measurements of soil to assess the contribution of interparticulate hydrogel swelling and various polymer-clay interactions on soil-water interactions and soil structural stability in an isolated manner. Finally, the effects of various organic and mineral soil fractions on soil-water interactions and soil structural stability was assessed in more detail for a natural, agriculturally cultivated soil by soil density fractionation and on the basis of the experiences gained from the previous experiments. The increased experiment complexity in the course of this thesis enabled to link physico-chemical properties of interparticulate hydrogel structures with soil structural stability on various scales. The established mechanistic model explains the contribution of interparticulate hydrogels to the structural stability of water-saturated and unsaturated soils: While swollen clay particles reduce soil structural stability by acting as lubricant between soil particles, interparticulate hydrogel structures increase soil structural stability by forming a flexible polymeric network which interconnects mineral particles more effectively than soil pore- or capillary water. It was appar-ent that soil structural stability increases with increasing viscosity of the interparticluate hydrogel in dependence on incubation time, soil texture, soil solution composition and external factors in terms of moisture dynamics and agricultural management practices. The stabilizing effect of interparticulate hydrogel structures further in-crease in the presence of clay particles which is attributed to additional polymer-clay interactions and the incor-poration of clay particles into the three-dimensional interparticulate hydrogel network. Furthermore, the simul-taneous swelling of clay particles and hydrogel structures results in the competition for water and thus in a mu-tual restriction of their swelling in the interparticle space. Thus, polymer-clay interactions not only increase the viscosity of the interparticulate hydrogel and thus its ability to stabilize soil structures but further reduce the swelling of clay particles and consequently their negative effects on soil structural stability. The knowledge on these underlying mechanisms enhance the knowledge on the formation of stable soil structures and enable to take appropriate management practices in order to maintain a sustainable soil structure. The additionally out-lined limitations and challenges of the mechanistic model should provide information on areas with optimization and research potential, respectively.
Optimizing withdrawal from drinking water reservoirs to combine downstream river demands with a sustainable raw water management (2018)
Weber, Michael
Fresh water resources like rivers and reservoirs are exposed to a drastically changing world. In order to safeguard these lentic ecosystems, they need stronger protection in times of global change and population growth. In the last years, the exploitation pressure on drinking water reservoirs has increased steadily worldwide. Besides securing the demands of safe drinking water supply, international laws especially in Europe (EU Water Framework Directive) stipulate to minimize the impact of dams on downstream rivers. In this study we investigate the potential of a smart withdrawal strategy at Grosse Dhuenn Reservoir to improve the temperature and discharge regime downstream without jeopardizing drinking water production. Our aim is to improve the existing withdrawal strategy for operating the reservoir in a sustainable way in terms of water quality and quantity. First, we set-up and calibrated a 1D numerical model for Grosse Dhuenn Reservoir with the open-source community model “General Lake Model” (GLM) together with its water quality module “Aquatic Ecodynamics” library (AED2). The reservoir model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, we extended the model source code with a selective withdrawal functionality (adaptive offtake) and added operational rules for a realistic reservoir management. Now the model is able to autonomously determine the best withdrawal height according to the temperature and flow requirements of the downstream river and the raw water quality objectives. Criteria for the determination of the withdrawal regime are selective withdrawal, development of stratification and oxygen content in the deep hypolimnion. This functionality is not available in current reservoir models, where withdrawal heights are generally provided a priori to the model and kept fixed during the simulation. Third, we ran scenario simulations identifying an improved reservoir withdrawal strategy to balance the demands for downstream river and raw water supply. Therefore we aimed at finding an optimal parallel withdrawal ratio between cold hypolimnetic water and warm epilimnetic or metalimnetic water in order to provide a pre-defined temperature in the downstream river. The reservoir model and the proposed withdrawal strategy provide a simple and efficient tool to optimize reservoir management in a multi-objective view for mastering future reservoir management challenges.
Soil organic matter aging processes and their contribution to the sequestration of organic chemicals in soil (2018)
Ondruch, Pavel
Soil organic matter (SOM) is a key component responsible for sequestration of organic molecules in soil and regulation of their mobility in the environment. The basic structure of SOM is a supramolecular assembly responding dynamically to the environmental factors and the presence of interacting molecules. Despite of the advances in the understanding of sorption processes, the relation between sorbate molecules, SOM supramolecular structure and its dynamics is limited. An example of a dynamic nature of SOM is a physicochemical matrix aging that is responsible for SOM structural arrangement. The underlying process of the physicochemical aging is the formation of water molecule bridges (WaMB) between functional groups of molecular segments. Since WaMB influence the stiffness of SOM structure, it was hypothesized that formation of WaMB contributes to the sequestration of organic molecules. However, this hypothesis has not been tested experimentally until now. Furthermore, the knowledge about the influence of organic molecules on WAMB is based solely on computer modeling studies. In addition, the influence of organic molecules on some physical phases forming SOM is not well understood. Especially, the interactions between organic molecules and crystalline phases represented by aliphatic crystallites, are only presumed. Thus, the investigation of those interactions in unfractioned SOM is of high importance. In order to evaluate the involvement of WaMB in the sequestration of organic molecules and to increase our understanding about interactions of organic chemicals with WaMB or aliphatic crystallites, the following hypotheses were tested experimentally. 1) Similarly to crystalline phases in synthetic polymers, aliphatic crystallites, as a part of SOM, cannot be penetrated by organic molecules. 2) The stability of WaMB is determined by the ability of surrounding molecules to interact with water forming WaMB. 3) WaMB prevent organic molecules to leave the SOM matrix and contribute thus to their immobilization. In order to test the hypotheses 1 and 2, a set of experiments including treatment of soils with chosen chemicals was prepared. Interaction abilities of these chemicals were characterized using interaction parameters from the Linear Solvation Energy Relationship theory. WaMB characteristics were monitored using Differential Scanning Calorimetry (DSC) allowing to measure the WaMB thermal stability and the rigidity of SOM matrix; which in turn was determined by the heat capacity change. In addition, DSC and 13C NMR spectroscopy assessed thermal properties and the structure of aliphatic crystallites. The spiking of samples with a model compound, phenol, and measurements of its desorption allowed to link parameters of the desorption kinetics with WaMB characteristics. The investigation showed that the WaMB stability is significantly reduced by the presence of molecules with H-donor/acceptor interaction abilities. The matrix rigidity associated with WaMB was mainly influenced by the McGowan’s volume of surrounding molecules, suggesting the importance of dispersion forces. The desorption kinetics of phenol followed a first order model with two time constants. Both of them showed a relation with WaMB stability, which supports the hypothesis that WaMB contribute to the physical immobilization of organic molecules. The experiments targeted to the crystallites revealed their structural change from the ordered to the disordered state, when in contact with organic chemicals. This manifested in their melting point depression and the decrease of overall crystallinity. Described structural changes were caused by molecules interacting with specific as well as non-specific forces, which suggests that aliphatic crystallites can be penetrated and modified by molecules with a broad range of interaction abilities. This work shows that chosen organic molecules interact with constituents of SOM as exemplified on WaMB and aliphatic crystallites, and cause measurable changes of their structure and properties. These findings show that the relevance of aliphatic crystallites for sorption in soil may have been underestimated. The results support the hypothesis that physicochemical matrix aging significantly contributes to the immobilization of organic chemicals in SOM.
EEG-Förderung für Biogas: Effizienz und Informationsasymmetrien - Ein Beitrag zum Controlling und Monitoring im Bereich der erneuerbaren Energien (2018)
Ampofo, Ado
Während es eine Vielzahl von Arbeiten zu der technologischen Entwicklung im Bereich der erneuerbaren Energien gibt, fehlt es jedoch bislang an einer mikroökonomischen Analyse der Verhaltensmuster der Akteure im Umfeld von Anlagen nach dem EEG. Als Akteure kommen hier in erster Linie der Anlagenbetreiber selbst und der Staat in Betracht. Im Hinblick auf Anlagenbetrieb und Vergütung der erzeugten Energie können beide mit unterschiedlichsten Interessen und Nutzenkalkülen aufeinander treffen. Diese Arbeit untersucht mikroökonomische Aspekte des EEG-Förderungssystems. Im Mittelpunkt der Betrachtung stehen die Förderungsmechanismen für Biogasanlagen, die im Hinblick auf mögliche Prinzipal-Agenten-Konflikte einer Untersuchung unterzogen werden.
Physical-biological interactions controlling the variability of oxygen fluxes across the sediment-water interface (2018)
Murniati, Erni
The physical-biological interactions that affect the temporal variability of benthic oxygen fluxes were investigated to gain improved understanding of the factors that control these processes. This study, for the first time is able to resolve benthic diffusive boundary layer (DBL) dynamics using the newly developed lifetime-based laser induced fluorescence (τLIF) oxygen imaging system, which enables study of the role of small-scale fluid mechanics generated by benthic organism activity, and hence a more detailed analysis of oxygen transport mechanisms across the sediment-water interface (SWI). The net benthic oxygen flux across the sediment-water interface is controlled by sediment oxygen uptake and oxygen transport. While the oxygen transport is largely influenced by turbulence driven by large-scale flows, sediment oxygen uptake is mainly affected by oxygen production and biological- and chemical-oxygen degradation of organic matter. Both processes can be enhanced by the presence of fauna and are intimately coupled. The benthic oxygen flux can be influenced by fauna in two ways, i.e. by modulating the availability of oxygen, which enhances the sediment oxygen uptake, and by enhancing the transport of oxygen. In-situ and a series of laboratory measurements were conducted to estimate the short- and seasonal variability of benthic fluxes including the effects of burrow ventilation activity by tube-dwelling animals using eddy correlation (EC) and τLIF oxygen imaging techniques, respectively. The in-situ benthic oxygen fluxes showed high variability at hourly and seasonal timescales, where statistical analysis indicated that current velocity and water depth were the most significant predictors of benthic oxygen flux at the waterside, which co-varied with the discharge, temperature, and oxygen concentration. The range of variability of seasonal fluxes corresponded to the friction velocities which were driven by large-scale flows. Application of a simplified analytical model that couples the effect of hydrodynamic forcing of the diffusive boundary layer with a temperature-dependent oxygen consumption rate within the sediment showed that friction velocity and temperature cause similar variability of the steady-state benthic oxygen flux. The application of τLIF oxygen imaging system in bioturbation experiments enabled the investigation and discovery of insights into oxygen transport mechanisms across the sediment-water interface. Distinct oxygen structures above burrow openings were revealed, these were associated with burrow ventilation. The DBL was degraded in the presence of burrow ventilation. Advective transport generated by the energetic plumes released at burrow outlets was the dominant transport driving mechanism. The contribution of diffusive flux to the total estimated decreased with increasing larval density. For a range of larvae densities, commonly observed in ponds and lakes, sediment oxygen uptake rates increased up to 2.5-fold in the presence of tube-dwelling animals, and the oxygen transport rate exceeded chironomid respiration by up to a factor of 4. The coupled physical-biological factors affecting net benthic oxygen flux can be represented by temperature, which is a prominent factor that accounts for both oxygen transport and sediment oxygen uptake. Low oxygen transport by flow coincided with high summer temperatures, amplified by a reduction of benthic population density and pupation. It can also, however, be offset by increased ventilation activity. In contrast, low temperature coincided with high oxygen concentrations, an abundance of larvae, and higher flow is offset by less burrow ventilation activity. Investigation of the effect of hydrodynamics on oxygen transport alone suggested that the expected increase of benthic oxygen flux under global warming can be offset by a reduction in flow velocity, which could ultimately lead to increasing carbon burial rates, and in a growing importance of anaerobic mineralization pathways with increasing emission rates of methane. This study suggests a significant contribution of biological induced benthic oxygen flux to physical transport driven by large-scale flow-fields contributing to bottom-boundary layer turbulence.
Conservation of the European weatherfish Misgurnus fossils - stocking measures, autecology and potential threats (2017)
Schreiber, Benjamin
The European weatherfish (Misgurnus fossilis) is a benthic freshwater fish species belonging to the family Cobitidae, that is subjected to a considerable decline in many regions across its original distribution range. Due to its cryptic behavior and low economic value, the causes of threat to weatherfish remained partly unknown and the species is rarely at the center of conservation efforts. In order to address these concerns, the overall aim of the present thesis was to provide a comprehensive approach for weatherfish conservation, including the development of stocking measures, investigations on the species autecology and the evaluation of potential threats. The first objective was to devise and implement a regional reintroduction and stock enhancement program with hatchery-reared weatherfish in Germany. Within this program (2014-2016), a total number of 168,500 juvenile weatherfish were stocked to seven water systems. Recaptures of 45 individuals at two reintroduction sites supported the conclusion that the developed stocking strategy was appropriate. In order to broaden the knowledge about weatherfish autecology and thereby refining the rearing conditions and the selection of appropriate stocking waters, the second objective was to investigate the thermal requirements of weatherfish larvae. Here, the obtained results revealed that temperatures higher than previously suggested were tolerated by larvae, whereas low temperatures within the range of likely habitat conditions increased mortality rates. As weatherfish can be frequently found in agriculturally impacted waters (e.g. ditch systems), they are assumed to have an increased probability to be exposed to chemical stress. Since the resulting risk has not yet been investigated with a focus on weatherfish, the third objective was to provide a methodical foundation for toxicity testing that additionally complies with the requirements of alternative test methods. For this purpose, the acute fish embryo toxicity test was successfully transferred to weatherfish and first results exhibited that sensitivity of weatherfish towards a tested reference substance (3,4-dichloroaniline) was highest compared to other species. On the basis of these findings, the fourth objective was to apply weatherfish embryos for multiple sediment bioassays in order to investigate teratogenic effects derived from sediment-associated contaminants. In this context, weatherfish revealed particular sensitivity to water extractable substances, indicating that sediment contamination might pose a considerable risk. Moreover, as an endangered benthic fish species with high ecological relevance for European waters that are specifically exposed to hazardous contaminants, the weatherfish might be a prospective species for an ecological risk assessment of sediment toxicity. Overall, the present thesis contributed to the conservation of weatherfish by considering a variety of aspects that interact and reinforce one another in order to achieve improvements for the species situation.
Entwicklung eines strategischen Marketingkonzeptes für die mittelständische Holzhausindustrie in Deutschland (2017)
Schaepe, Volker
Die deutsche Holzhausbranche wächst seit Jahren, allerdings beschäftigen sich die Unternehmen nicht strategisch mit dem Thema Marketing. Diese Dissertation bildet durch qualitative und quantitative Bewohnerbefragungen die Basis für die Entwicklung eines strategischen Marketingansatzes im Holzhausbereich.
The influence of traditional flood irrigation on biodiversity, plant Functional composition and plant nutrient availability in Central European grassland (2017)
Müller, Isabell
Grassland management has been increasingly intensified throughout centuries since mankind started to control and modify the landscape. Species communities were always shaped alongside management changes leading to huge alterations in species richness and diversity up to the point where land use intensity exceeded the threshold. Since then biodiversity became increasingly lost. Today, global biodiversity and especially grassland biodiversity is pushed beyond its boundaries. Policymakers and conservationists seek for management options which fulfill the requirements of agronomic interests as well as biodiversity conservation alongside with the maintenance of ecosystem processes. However, there is and will always be a trade-off. Earlier in history, natural circumstances in a landscape mainly determined regionally adapted land use. These regional adaptions shaped islands for many specialist species, and thus diverse species communities, favoring the establishment of a high β-diversity. With the raising food demand, these regional and traditional management regimes became widely unprofitable, and the invention of mineral fertilizers ultimately led to a wide homogenization of grassland management and, as follows, the loss of biotic heterogeneity. In the course of the green revolution, this immediate coherence and the dependency between grassland biodiversity and traditional land use practices becomes increasingly noticed. Indeed, some traditional forms of management such as meadow irrigation have been preserved in a few regions and thus give us the opportunity to directly investigate their long-term relevance for the species communities and ecosystem processes. Traditional meadow irrigation was a common management practice to improve productivity in lowland, but also alpine hay meadows throughout Europe until the 20th century. Nowadays, meadow irrigation is only practiced as a relic in a few remnant areas. In parts of the Queichwiesen meadows flood irrigation goes back to the Middle Ages, which makes them a predestined as a model region to study the long- and short-term effects of lowland meadow irrigation on the biodiversity and ecosystem processes. Our study pointed out the conservation value of traditional meadow irrigation for the preservation of local species communities as well as the plant diversity at the landscape scale. The structurally more complex irrigated meadows lead to the assumption of a higher arthropod diversity (Orthodoptera, Carabidae, Araneae), which could not be detected. However, irrigated meadows are a significant habitat for moisture dependent arthropod species. In the light of the agronomic potential, flood irrigation could be a way to at least reduce fertilizer costs to a certain degree and possibly prevent overfertilization pulses which are necessarily hazardous to non-target ecosystems. Still, the reestablishment of flood irrigation in formerly irrigated meadows, or even the establishment of new irrigation systems needs ecological and economic evaluation dependent on regional circumstances and specific species communities, at which this study could serve as a reference point.
Potential of SemiNatural Habitats to support PEST CONTROL and POLLINATION - including a case study on pumpkin (2017)
Pfister, Sonja C.
Natural pest control and pollination are important ecosystem services for agriculture. They can be supported by organic farming and by seminatural habitats at the local and landscape scale. The potential of seminatural habitats to support predatory flies (chapters 2 and 3) and bees(chapter 7) at the local and landscape scale was investigated in seminatural habitats. Predatory flies were more abundant in woody habitats and positively related to landscape complexity. The diversity and the abundance of honey and wild bees were positively related to the supply of flowers offered in the seminatural habitats. The influence of organic farming, adjacent seminatural habitats and landscape complexity on pest control (chapter 4) and pollination (chapter 6) was investigated in 18 pumpkin fields. Organic farming lacked strong effects both on the pest control and on the pollination of pumpkin. Pest control is best supported at the local scale by the flower abundance in the adjacent habitat. The flower supply positively affected the density of natural enemies and tended to reduce aphid densities in pumpkin fields. Pumpkin provides a striking example for a dominant role of wild pollinators for pollination success, because bumble bees are the key pollinators of pumpkin in Germany, despite a higher visitation frequency of honey bees. Pollination is best supported by landscape complexity. Bumble bee visits and as a result pollen delivery in pumpkin were negatively related to the dominance of agricultural land in the surrounding landscape. The influence of aphid density (chapter 8) and pollination (chapter 5) on pumpkin yield was evaluated. Pumpkin yields were not affected by aphid densities observed in the pumpkin fields and not limited by pollination at the current levels of bee visitation. In conclusion, especially seminatural habitats, that provide diverse, continuous floral resources, are important for natural enemies and pollinators. A sufficient proportion of different seminatural habitat types in agricultural landscapes should be maintained and restored. Thereby natural enemies such as predatory flies, wild pollinators such as bumble bees, and the pest control and pollination provided by them can be supported.
Aquaculture, conservation and restoration of anadromous fish populations of River Rhine with particular regard to the re-introduction of the Allis shad Alosa alosa (2016)
Hundt, Matthias
The largest population of the anadromous Allis shad (A. alosa) of the 19th century was found in River Rhine and has to be considered extinct today. To facilitate the return of A. alosa into River Rhine an EU LIFE-project was initiated in 2007. The overall objective of this thesis was to assist aquaculture and stocking-measures at River Rhine, as well as to support restoration and conservation of populations of Allis shad in Europe. By culturing the free-swimming nematode T. aceti in a solution of cider vinegar we developed a cost-effective live food organism for the larviculture of fish. As indicated by experiments with C. maraena, T. aceti cannot be regarded as an alternative to Artemia nauplii. However it has to be considered a suitable supplemental feed in the early rearing of C. maraena by providing essential fatty acids, thereby optimizing growth. Also mass-marking practices with Oxytetracycline, as they are applied in the restocking of Allis shad have been evaluated. In experiments with D. rerio we demonstrated that water hardness can detrimentally affect mortality during marking and has to be considered crucial in the development of marking protocols for freshwater fish. In order to get independent from wild spawners an ex-situ Broodstock-facility for Allis shad was established in 2011. Upon examination of two complete year classes of this broodstock, we found a high prevalence of various malformations, which could be traced back to distinct cysts developing one month post hatch. Despite applying a variety of clinical tests we could not identify any infectious agents causing these malformations. The observed malformations are probably a consequence of suboptimal feeding practices or the properties of the physio-chemical rearing environment. The decline of stocks of A. alosa in Europe has been largely explained with the increase of river temperatures as a consequence of global warming. By investigating the temperature physiology of larval Allis shad we demonstrated that A. alosa ranges among the most thermo-tolerant species in Europe and that correlations between rising temperatures and the disappearance of this species have to be understood in a synecological context and by integrating a variety of stressors other than temperature. By capturing and examining juvenile and adult Allis shad from River Rhine, we demonstrated the first natural reproduction of A. alosa in River Rhine since nearly 100 years and the success of stocking measures within the framework of the LIFE project.
  • 11 to 20

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks