Refine
Year of publication
Document Type
- Master's Thesis (14)
- Part of Periodical (14)
- Doctoral Thesis (7)
- Bachelor Thesis (2)
- Study Thesis (2)
- Diploma Thesis (1)
- Habilitation (1)
Language
- English (41) (remove)
Keywords
- ontology (3)
- Linked Open Data (2)
- Maschinelles Lernen (2)
- mobile phone (2)
- multimedia metadata (2)
- API (1)
- Algolib (1)
- Analysis of social platform (1)
- Annotation (1)
- Articles for Deletion (1)
Institute
- Institute for Web Science and Technologies (41) (remove)
“Did I say something wrong?” A word-level analysis of Wikipedia articles for deletion discussions
(2016)
This thesis focuses on gaining linguistic insights into textual discussions on a word level. It was of special interest to distinguish messages that constructively contribute to a discussion from those that are detrimental to them. Thereby, we wanted to determine whether “I”- and “You”-messages are indicators for either of the two discussion styles. These messages are nowadays often used in guidelines for successful communication. Although their effects have been successfully evaluated multiple times, a large-scale analysis has never been conducted. Thus, we used Wikipedia Articles for Deletion (short: AfD) discussions together with the records of blocked users and developed a fully automated creation of an annotated data set. In this data set, messages were labelled either constructive or disruptive. We applied binary classifiers to the data to determine characteristic words for both discussion styles. Thereby, we also investigated whether function words like pronouns and conjunctions play an important role in distinguishing the two. We found that “You”-messages were a strong indicator for disruptive messages which matches their attributed effects on communication. However, we found “I”-messages to be indicative for disruptive messages as well which is contrary to their attributed effects. The importance of function words could neither be confirmed nor refuted. Other characteristic words for either communication style were not found. Yet, the results suggest that a different model might represent disruptive and constructive messages in textual discussions better.
Unlocking the semantics of multimedia presentations in the web with the multimedia metadata ontology
(2010)
The semantics of rich multimedia presentations in the web such as SMIL, SVG and Flash cannot or only to a very limited extend be understood by search engines today. This hampers the retrieval of such presentations and makes their archival and management a difficult task. Existing metadata models and metadata standards are either conceptually too narrow, focus on a specific media type only, cannot be used and combined together, or are not practically applicable for the semantic description of rich multimedia presentations. In this paper, we propose the Multimedia Metadata Ontology (M3O) for annotating rich, structured multimedia presentations. The M3O provides a generic modeling framework for representing sophisticated multimedia metadata. It allows for integrating the features provided by the existing metadata models and metadata standards. Our approach bases on Semantic Web technologies and can be easily integrated with multimedia formats such as the W3C standards SMIL and SVG. With the M3O, we unlock the semantics of rich multimedia presentations in the web by making the semantics machine-readable and machine-understandable. The M3O is used with our SemanticMM4U framework for the multi-channel generation of semantically-rich multimedia presentations.
This habilitation thesis collects works addressing several challenges on handling uncertainty and inconsistency in knowledge representation. In particular, this thesis contains works which introduce quantitative uncertainty based on probability theory into abstract argumentation frameworks. The formal semantics of this extension is investigated and its application for strategic argumentation in agent dialogues is discussed. Moreover, both the computational as well as the meaningfulness of approaches to analyze inconsistencies, both in classical logics as well as logics for uncertain reasoning is investigated. Finally, this thesis addresses the implementation challenges for various kinds of knowledge representation formalisms employing any notion of inconsistency tolerance or uncertainty.
Topic models are a popular tool to extract concepts of large text corpora. These text corpora tend to contain hidden meta groups. The size relation of these groups is frequently imbalanced. Their presence is often ignored when applying a topic model. Therefore, this thesis explores the influence of such imbalanced corpora on topic models.
The influence is tested by training LDA on samples with varying size relations. The samples are generated from data sets containing a large group differences i.e language difference and small group differences i.e. political orientation. The predictive performance on those imbalanced corpora is judged using perplexity.
The experiments show that the presence of groups in training corpora can influence the prediction performance of LDA. The impact varies due to various factors, including language-specific perplexity scores. The group-related prediction performance changes for groups when varying the relative group sizes. The actual change varies between data sets.
LDA is able to distinguish between different latent groups in document corpora if differences between groups are large enough, e.g. for groups with different languages. The proportion of group-specific topics is under-proportional to the share of the group in the corpus and relatively smaller for minorities.
Tagging systems are intriguing dynamic systems, in which users collaboratively index resources with the so-called tags. In order to leverage the full potential of tagging systems, it is important to understand the relationship between the micro-level behavior of the individual users and the macro-level properties of the whole tagging system. In this thesis, we present the Epistemic Dynamic Model, which tries to bridge this gap between the micro-level behavior and the macro-level properties by developing a theory of tagging systems. The model is based on the assumption that the combined influence of the shared background knowledge of the users and the imitation of tag recommendations are sufficient for explaining the emergence of the tag frequency distribution and the vocabulary growth in tagging systems. Both macro-level properties of tagging systems are closely related to the emergence of the shared community vocabulary. rnrnWith the help of the Epistemic Dynamic Model, we show that the general shape of the tag frequency distribution and of the vocabulary growth have their origin in the shared background knowledge of the users. Tag recommendations can then be used for selectively influencing this general shape. In this thesis, we especially concentrate on studying the influence of recommending a set of popular tags. Recommending popular tags adds a feedback mechanism between the vocabularies of individual users that increases the inter-indexer consistency of the tag assignments. How does this influence the indexing quality in a tagging system? For this purpose, we investigate a methodology for measuring the inter-resource consistency of tag assignments. The inter-resource consistency is an indicator of the indexing quality, which positively correlates with the precision and recall of query results. It measures the degree to which the tag vectors of indexed resources reflect how the users perceive the similarity between resources. We argue with our model, and show it with a user experiment, that recommending popular tags decreases the inter-resource consistency in a tagging system. Furthermore, we show that recommending the user his/her previously used tags helps to increase the inter-resource consistency. Our measure of the inter-resource consistency complements existing measures for the evaluation and comparison of tag recommendation algorithms, moving the focus to evaluating their influence on the indexing quality.
Data visualization is an effective way to explore data. It helps people to get a valuable insight of the data by placing it in a visual context. However, choosing a good chart without prior knowledge in the area is not a trivial job. Users have to manually explore all possible visualizations and decide upon ones that reflect relevant and desired trend in the data, are insightful and easy to decode, have a clear focus and appealing appearance. To address these challenges we developed a Tool for Automatic Generation of Good viSualizations using Scoring (TAG²S²). The approach tackles the problem of identifying an appropriate metric for judging visualizations as good or bad. It consists of two modules: visualization detection: given a data-set it creates a list of combination of data attributes for scoring and visualization ranking: scores each chart and decides which ones are good or bad. For the later, an utility metric of ten criteria was developed and each visualization detected in the first module is evaluated on these criteria. Only those visualizations that received enough scores are then presented to the user. Additionally to these data parameters, the tool considers user perception regarding the choice of visual encoding when selecting a visualization. To evaluate the utility of the metric and the importance of each criteria, test cases were developed, executed and the results presented.
This Master Thesis is an exploratory research to determine whether it is feasible to construct a subjectivity lexicon using Wikipedia. The key hypothesis is that that all quotes in Wikipedia are subjective and all regular text are objective. The degree of subjectivity of a word, also known as ''Quote Score'' is determined based on the ratio of word frequency in quotations to its frequency outside quotations. The proportion of words in the English Wikipedia which are within quotations is found to be much smaller as compared to those which are not in quotes, resulting in a right-skewed distribution and low mean value of Quote Scores.
The methodology used to generate the subjectivity lexicon from text corpus in English Wikipedia is designed in such a way that it can be scaled and reused to produce similar subjectivity lexica of other languages. This is achieved by abstaining from domain and language-specific methods, apart from using only readily-available English dictionary packages to detect and exclude stopwords and non-English words in the Wikipedia text corpus.
The subjectivity lexicon generated from English Wikipedia is compared against other lexica; namely MPQA and SentiWordNet. It is found that words which are strongly subjective tend to have high Quote Scores in the subjectivity lexicon generated from English Wikipedia. There is a large observable difference between distribution of Quote Scores for words classified as strongly subjective versus distribution of Quote Scores for words classified as weakly subjective and objective. However, weakly subjective and objective words cannot be differentiated clearly based on Quote Score. In addition to that, a questionnaire is commissioned as an exploratory approach to investigate whether subjectivity lexicon generated from Wikipedia could be used to extend the coverage of words of existing lexica.
This thesis presents novel approaches for integrating context information into probabilistic models. Data from social media is typically associated with metadata, which includes context information such as timestamps, geographical coordinates or links to user profiles. Previous studies showed the benefits of using such context information in probabilistic models, e.g.\ improved predictive performance. In practice, probabilistic models which account for context information still play a minor role in data analysis. There are multiple reasons for this. Existing probabilistic models often are complex, the implementation is difficult, implementations are not publicly available, or the parameter estimation is computationally too expensive for large datasets. Additionally, existing models are typically created for a specific type of content and context and lack the flexibility to be applied to other data.
This thesis addresses these problems by introducing a general approach for modelling multiple, arbitrary context variables in probabilistic models and by providing efficient inference schemes and implementations.
In the first half of this thesis, the importance of context and the potential of context information for probabilistic modelling is shown theoretically and in practical examples. In the second half, the example of topic models is employed for introducing a novel approach to context modelling based on document clusters and adjacency relations in the context space. They can cope with areas of sparse observations and These models allow for the first time the efficient, explicit modelling of arbitrary context variables including cyclic and spherical context (such as temporal cycles or geographical coordinates). Using the novel three-level hierarchical multi-Dirichlet process presented in this thesis, the adjacency of ontext clusters can be exploited and multiple contexts can be modelled and weighted at the same time. Efficient inference schemes are derived which yield interpretable model parameters that allow analyse the relation between observations and context.
In this thesis, I study the spectral characteristics of large dynamic networks and formulate the spectral evolution model. The spectral evolution model applies to networks that evolve over time, and describes their spectral decompositions such as the eigenvalue and singular value decomposition. The spectral evolution model states that over time, the eigenvalues of a network change while its eigenvectors stay approximately constant.
I validate the spectral evolution model empirically on over a hundred network datasets, and theoretically by showing that it generalizes arncertain number of known link prediction functions, including graph kernels, path counting methods, rank reduction and triangle closing. The collection of datasets I use contains 118 distinct network datasets. One dataset, the signed social network of the Slashdot Zoo, was specifically extracted during work on this thesis. I also show that the spectral evolution model can be understood as a generalization of the preferential attachment model, if we consider growth in latent dimensions of a network individually. As applications of the spectral evolution model, I introduce two new link prediction algorithms that can be used for recommender systems, search engines, collaborative filtering, rating prediction, link sign prediction and more.
The first link prediction algorithm reduces to a one-dimensional curve fitting problem from which a spectral transformation is learned. The second method uses extrapolation of eigenvalues to predict future eigenvalues. As special cases, I show that the spectral evolution model applies to directed, undirected, weighted, unweighted, signed and bipartite networks. For signed graphs, I introduce new applications of the Laplacian matrix for graph drawing, spectral clustering, and describe new Laplacian graph kernels. I also define the algebraic conflict, a measure of the conflict present in a signed graph based on the signed graph Laplacian. I describe the problem of link sign prediction spectrally, and introduce the signed resistance distance. For bipartite and directed graphs, I introduce the hyperbolic sine and odd Neumann kernels, which generalize the exponential and Neumann kernels for undirected unipartite graphs. I show that the problem of directed and bipartite link prediction are related by the fact that both can be solved by considering spectral evolution in the singular value decomposition.
Through the increasing availability of access to the web, more and more interactions between people take place in online social networks, such as Twitter or Facebook, or sites where opinions can be exchanged. At the same time, knowledge is made openly available for many people, such as by the biggest collaborative encyclopedia Wikipedia and diverse information in Internet forums and on websites. These two kinds of networks - social networks and knowledge networks - are highly dynamic in the sense that the links that contain the important information about the relationships between people or the relations between knowledge items are frequently updated or changed. These changes follow particular structural patterns and characteristics that are far less random than expected.
The goal of this thesis is to predict three characteristic link patterns for the two network types of interest: the addition of new links, the removal of existing links and the presence of latent negative links. First, we show that the prediction of link removal is indeed a new and challenging problem. Even if the sociological literature suggests that reasons for the formation and resolution of ties are often complementary, we show that the two respective prediction problems are not. In particular, we show that the dynamics of new links and unlinks lead to the four link states of growth, decay, stability and instability. For knowledge networks we show that the prediction of link changes greatly benefits from the usage of temporal information; the timestamp of link creation and deletion events improves the prediction of future link changes. For that, we present and evaluate four temporal models that resemble different exploitation strategies. Focusing on directed social networks, we conceptualize and evaluate sociological constructs that explain the formation and dissolution of relationships between users. Measures based on information about past relationships are extremely valuable for predicting the dissolution of social ties. Hence, consistent for knowledge networks and social networks, temporal information in a network greatly improves the prediction quality. Turning again to social networks, we show that negative relationship information such as distrust or enmity can be predicted from positive known relationships in the network. This is particularly interesting in networks where users cannot label their relationships to other users as negative. For this scenario we show how latent negative relationships can be predicted.