Refine
Year of publication
Document Type
- Doctoral Thesis (475) (remove)
Language
- English (249)
- German (224)
- Multiple languages (1)
- Spanish (1)
Keywords
- Pestizid (8)
- Pflanzenschutzmittel (8)
- Führung (6)
- Inklusion (6)
- Grundwasserfauna (5)
- Landwirtschaft (5)
- Modellierung (4)
- Persönlichkeit (4)
- Software Engineering (4)
- Unterrichtsforschung (4)
Institute
- Fachbereich 7 (93)
- Fachbereich 8 (47)
- Institut für Informatik (35)
- Institut für Integrierte Naturwissenschaften, Abt. Biologie (29)
- Institut für Umweltwissenschaften (23)
- Institut für Integrierte Naturwissenschaften, Abt. Chemie (22)
- Fachbereich 5 (20)
- Institut für Computervisualistik (18)
- Institut für Integrierte Naturwissenschaften, Abt. Physik (13)
- Institut für Wirtschafts- und Verwaltungsinformatik (13)
Semantic Web technologies have been recognized to be key for the integration of distributed and heterogeneous data sources on the Web, as they provide means to define typed links between resources in a dynamic manner and following the principles of dataspaces. The widespread adoption of these technologies in the last years led to a large volume and variety of data sets published as machine-readable RDF data, that once linked constitute the so-called Web of Data. Given the large scale of the data, these links are typically generated by computational methods that given a set of RDF data sets, analyze their content and identify the entities and schema elements that should be connected via the links. Analogously to any other kind of data, in order to be truly useful and ready to be consumed, links need to comply with the criteria of high quality data (e.g., syntactically and semantically accurate, consistent, up-to-date). Despite the progress in the field of machine learning, human intelligence is still essential in the quest for high quality links: humans can train algorithms by labeling reference examples, validate the output of algorithms to verify their performance on a data set basis, as well as augment the resulting set of links. Humans —especially expert humans, however, have limited availability. Hence, extending data quality management processes from data owners/publishers to a broader audience can significantly improve the data quality management life cycle.
Recent advances in human computation and peer-production technologies opened new avenues for human-machine data management techniques, allowing to involve non-experts in certain tasks and providing methods for cooperative approaches. The research work presented in this thesis takes advantage of such technologies and investigates human-machine methods that aim at facilitating link quality management in the Semantic Web. Firstly, and focusing on the dimension of link accuracy, a method for crowdsourcing ontology alignment is presented. This method, also applicable to entities, is implemented as a complement to automatic ontology alignment algorithms. Secondly, novel measures for the dimension of information gain facilitated by the links are introduced. These entropy-centric measures provide data managers with information about the extent the entities in the linked data set gain information in terms of entity description, connectivity and schema heterogeneity. Thirdly, taking Wikidata —the most successful case of a linked data set curated, linked and maintained by a community of humans and bots— as a case study, we apply descriptive and predictive data mining techniques to study participation inequality and user attrition. Our findings and method can help community managers make decisions on when/how to intervene with user retention plans. Lastly, an ontology to model the history of crowd contributions across marketplaces is presented. While the field of human-machine data management poses complex social and technical challenges, the work in this thesis aims to contribute to the development of this still emerging field.
Currently, there are a variety of digital tools in the humanities, such
as annotation, visualization, or analysis software, which support researchers in their work and offer them new opportunities to address different research questions. However, the use of these tools falls far
short of expectations. In this thesis, twelve improvement measures are
developed within the framework of a design science theory to counteract the lack of usage acceptance. By implementing the developed design science theory, software developers can increase the acceptance of their digital tools in the humanities context.
The presented study was motivated by the dynamic phenomena observed in basic catalytic surface reactions, especially by bi- and tristability, and the interactions between these stable states. In this regard, three reaction-diffusion models were developed and examined using bifurcation theory and numerical simulations.
A first model was designed to extend the bistable CO oxidation on Ir(111) to include hydrogen and its oxidation. The differential equation system was analyzed within the framework of bifurcation theory, revealing three branches of stable solutions.
One state is characterized by high formation rates (upper rate state, UR), while the other two branches display low formation rates (lower rate (LR) \& very low rate (VLR) states).
The overlapping branches form the shape of a `swallowtail', the curve of saddle-node bifurcations forming two cusps. Increasing the temperature leads to a subsequent unfolding and hence decreases the system complexity.
A series of numerical simulations representing possible experiments was conducted to illustrate the experimental accessibility (or the lack) of said states. Relaxation experiments show partially long decay times. Quasistatic scanning illustrates the existence of all three states within the tristable regime and their respective conversion once crossing a fold.
A first attempt regarding the state dominance in reaction-diffusion fronts was done. While UR seems to dominate in 1D, a 2D time-evolution shows that LR invades the interphase between UR and VLR.
Subsequently, a generic monospecies mock model was used for the comprehensive study of reaction-diffusion fronts. A quintic polynomial as reaction term was chosen, derived by the sixth-order potential associated with the `butterfly bifurcation'. This ensures up to three stable solutions($u_{0}$,$u_{1}$,$u_{2}$), depending on the four-dimensional parameter space.
The model was explored extensively, identifying regions with similar behaviors.
A term for the front velocity connecting two stable states was derived, depending only on the relative difference of the states' potential wells.
Equipotential curves were found, where the front velocity vanishes of a given front. Numerical simulations on a two-dimensional, finite disk using a triangulated mesh supported these findings.
Additionally, the front-splitting instability was observed for certain parameters. The front solution $u_{02}$ becomes unstable and divides into $u_{01}$ and $u_{12}$, exhibiting different front velocities. A good estimate for the limit of the front splitting region was given and tested using time evolutions.
Finally, the established mock model was modified from continuous to discrete space, utilizing a simple domain in 1D and three different lattices in 2D (square, hexagonal, triangular).
For low diffusivities or large distances between coupling nodes, fronts can become pinned, if the parameters are within range of the equipotential lines. This phenomenon is known as propagation failure and its extent in parameter space was explored in 1D. In 2D, an estimate was given for remarkable front orientations respective to the lattice using a pseudo-2D approximation. Near the pinning region, front velocities differ significantly from the continuous expectation as the shape of the curve potential becomes significant. Factors that decide the size and shape of the pinning regions are the coupling strength, the lattice, the front orientation relative to the lattice, and the front itself. The bifurcation diagram shows a snaking curve in the pinning region, each alternating branch representing a stable or unstable frozen front solution. Numerical simulations supported the observations concerning propagation failure and lattice dependence.
Furthermore, the influence of front orientation on the front velocity was explored in greater detail, showing that fronts with certain lattice-dependent orientations are more or less prone to propagation failure. This leads to the possibility of pattern formation, reflecting the lattice geometry. An attempt to quantify the front movement depending on angular front orientation has shown reasonable results and good agreement with the pseudo-2D approach.
Die Studie thematisiert die Positionierung und Subjektivierung von Medienpädagog*innen im Diskurs um Gewaltdarstellungen in Computerspielen. Der sogenannte ‚Killerspiel‘-Diskurs in den Jahren 2001 bis 2016 stellt für medienpädagogische Fachkräfte ein Feld widersprüchlicher Handlungserwartungen dar, Gewaltdarstellungen in Computerspielen entweder als Problem wahrzunehmen und dieses zu bearbeiten oder Computerspiele als Chance zu begreifen. Als rele-vante Multiplikator*innen diskursiver Wissensbestände wurden deswegen für diese Studie Me-dienpädagog*innen interviewt, die an maßgeblichen Positionen in der Schnittstelle zwischen Wissenschaft und Praxis agieren und daher für viele Kolleg*innen deutungs- und praxisrelevan-tes Wissen generieren. Um die Ausrichtung dieses Wissens zu prüfen, wurde in dieser Studie die Frage gestellt, wie sich diese medienpädagogischen Fachkräfte, die korrigierend in Diskurse ein-greifen, positionieren und inwiefern (medien-)pädagogische Professionalität als Ressource und Grenze der Positionierung fungiert.
Um die Fragestellung zu beantworten wurden zwei empirisch analytische Untersuchungen durchgeführt. Zuerst wurde eine Sekundäranalyse bestehender Diskursanalysen zum ‚Killer-spiel‘-Diskurs durchgeführt, um die Subjektpositionen herauszuarbeiten, mit denen sich die Me-dienpädagog*innen auseinandersetzen mussten. In einem zweiten Schritt wurde eine qualitative Interviewstudie mit neun Medienpädagog*innen durchgeführt. Im Anschluss an die semi-narrativen Expert*inneninterviews wurden diese in einem dreistufigen Verfahren ausgewertet. Nach der deduktiven und induktiven Kategorienbildung in Anlehnung an die inhaltlich struktu-rierende Inhaltsanalyse, wurde im Rahmen einer Deutungsmusteranalyse das Deutungswissen der Medienpädagog*innen und der Sinnhorizont ihrer Intervention in den Diskurs feinanalytisch rekonstruiert. Zuletzt wurden drei biographische Fallanalysen durchgeführt, um die Relationie-rung zwischen Diskurs und (Berufs-)biographie zu diskutieren.
Im Rahmen der Sekundäranalyse des ‚Killerspiel‘-Diskurses konnte die bisher in Diskursanaly-sen rekonstruierte Differenzierung von Risiko- und Chancennarrativ erweitert werden. Durch die Abgrenzung jeweils zweier Deutungsmuster des Problemdiskurses (‚Gefahr‘ und ‚Risiko‘) und des Gegendiskurses (‚Optimierung von Lernchancen‘ und ‚Kultur‘) konnten dadurch Positionie-rungen in multiplen Konfliktfeldern sichtbar gemacht werden. So war es möglich die fachliche Positionierung der Medienpädagog*innen als Zwischenraum zu fassen, in dem sowohl Deutun-gen des Gegendiskurses als auch des Problemdiskurses eigenwillig miteinander relationiert wer-den. Die eigenwillige Aneignung diskursiver Problem- und Deutungsmuster verläuft bei den Medienpädagog*innen über unterschiedliche fachliche Schnittstellen und Kopplungen. Statt den Diskurs mit der eigenen Lebensgeschichte zu relationieren wird er mit der in Handlungsfeld-strukturen situierten fachlichen medienpädagogischen Praxis in Beziehung gesetzt. Dabei ist eine Pädagogisierung des Diskurses und eine Diskursivierung pädagogischer Handlungsfelder zu beobachten. Mittels mehrerer Pädagogiken werden diskursive Deutungsmuster transformiert und das medienpädagogische Handeln durch die Re-Interpretation medienpädagogischer Hand-lungsfelder im Sinnhorizont des Diskurses als Intervention in den Diskurs gerahmt. Gleichzeitig wird in einem ‚Opportunismus der Uneindeutigkeit‘ die Anschlussfähigkeit an Problemdeutun-gen durch die Selbstdarstellung als verantwortliche Problembearbeiter*innen gewahrt, wodurch die eigene Handlungsfähigkeit, die Legitimität des Handelns und der Zugang zu gesellschaftli-chen Ressourcen gesichert wird.
In den Fallanalysen zeigte sich, dass diese fachlichen Positionierungen nur dann einen Subjekti-vierungsprozess dokumentieren, wenn die Erzählbausteine des Diskurses (Deutungsmuster und diskursiver Konflikt) als Material für die eigene Selbsterzählung herangezogen und als Professi-onsverständnis re-artikuliert werden. Das Konfliktszenario wird dann über dessen öffentliche Thematisierung hinaus als berufsbiographisches Projekt formulierbar, was sich insbesondere da-rin zeigt, dass prospektive Zukunftsentwürfe weiterhin im Deutungs- und Konfliktspektrum des Diskurses verortet werden. Subjektivierung professioneller Akteure kann daher als über fachliche Positionierungen (als fachlich orientierte, kommentierende Auseinandersetzungen mit im Diskurs verhandelten Deutungsmustern und Wissensbeständen) hinausgehende Prozesse der Deutung des eigenen Professionalitätsverständnisses, die Ausbildung von Pädagogiken und die Veranke-rung berufsbiographischer Ziele im Horizont des Deutungsspektrum des Diskurses gefasst wer-den.
In der medienpädagogischen Professionsforschung können die Deutungsmuster und Subjektpo-sitionen des Diskurses als Professionalitätserwartungen analytisch Anwendung finden. Ihr Vor-teil gegenüber den hierfür auch herangezogenen Paradigmen der Medienpädagogik ist der Aktu-alitäts- und Gegenstandsbezug. Auch in anderen Themenbereichen (bspw. Mediensucht) können die Deutungsmuster des Diskurses sinnvoll Anwendung finden. Die Studie konnte zudem zei-gen, dass eine Subjektivierungsheuristik sinnvoll auf professionelle Akteure anwendbar ist, da fachliche Positionierungen von Subjektivierungen deutlich unterschieden werden können. Dafür wurde eine spezielle für professionelle Akteure konzipierte Subjektivierungsheuristik entworfen, die insbesondere den unterschiedlichen Funktionen diverser Wissensformen Rechnung tragen kann und in der Professionsforschung die Relevanz des diskursiven Wissens als relevanter Wis-sensform für professionelle Praxis herausstellt.
Agricultural intensification is leading to a severe decline in farmland biodiversity worldwide. The resulting landscape simplification through the expansion of monocultures and removal of non-crop habitats has a major impact on arthropod communities in agricultural landscapes. While arable fields are often highly disturbed and ephemeral habitats that are unsuitable for many species, non-crop habitats in agroecosystems can provide important refugia. The creation of non-crop habitats through agri-environmental schemes (AES) in intensive agricultural landscapes, such as the ‘Maifeld’ region in western Germany, is intended to mitigate the negative effects of agricultural intensification, although the effectiveness of these measures for nature conservation is still controversial. Therefore, this work focuses on the taxonomic and functional diversity of beetles (Coleoptera) and spiders (Araneida), being important providers of ecosystem services, between wheat fields and different non-crop habitats, namely grassy field margins adjacent to wheat and oilseed rape fields, small- and large-scale set-aside areas sown with wildflowers, and permanent grassland fallows. Arthropods were collected between 2019 and 2020 using pitfall traps and suction sampling. Land-use type influenced beetle and spider diversity in the study area, with significantly higher values in grassland fallows than wheat fields. Surprisingly, species diversity differed little among all non-crop habitats, but all harboured distinct species assemblages. In particular, large long-term grassland fallows showed the largest within-group variation of beetle and spider assemblages and represented important habitats, especially for habitat specialists and threatened species, likely due to their variable soil moisture and complex habitat structure. In contrast, the homogeneous arthropod assemblages of wheat fields exhibited lower trait richness and were dominated by a few predatory species adapted to such disturbed, man-made habitats. Interestingly, all conservation measures complemented each other in that they contributed in different ways to supporting beetles and spiders in agricultural landscapes. Even small-scale non-crop habitats and existing habitat boundaries in an agricultural matrix appear to be valuable habitats for farmland arthropods by enhancing taxonomic diversity. Field margins and small wildflower-sown patches can link isolated non-crop habitats and contribute to a heterogeneous agricultural landscape. Consequently, a combination of various small- and large-scale greening measures leads to increased compositional and configurational landscape heterogeneity, resulting in improved beetle and spider diversity. Considering the ongoing loss of farmland biodiversity worldwide, agri-environmental schemes should be promoted in the future, as they are particularly important for arthropod conservation in intensive agricultural landscapes such as the Maifeld region.
The present study deals with the synthesis of N-phenacylpyridinium salts and their use as photoinitiators for epoxy resins. The use and suitability of phenacyl salts as photoinitiators for epoxy resins has already been described in previous studies. The individual impact of the specific components on the rate constants of epoxy reaction has not been investigated in detail. Based on the structure of N-phenacylpyridinium salt the substances described in the present study were varied due to the exchange of counter ion and different substituents. Investigating the impact of the specific substituent with focus on the reaction of epoxy groups there is a dependence found for three main factors. First, depending on whether to use a phenyl or methyl group as substituent there was found an impact on the process of photolysis. Furthermore, concerning the dependences on the pyridine derivative and the counter ion, it was found that pyridine derivatives with electron withdrawing groups and counter ions, which can build strong acids, accelerate the rate constants of the epoxy reaction. Vice versa, pyridine derivatives with electron donating groups and counter ions, which can form weaker acids, decrease the rate constants.
The determined rate constants and the formulation of substances discussed in the present thesis in an adhesive formulation show the suitability of selected substances as photoinitiators for the polymerization of epoxy resins.
Diet-related effects of antimicrobials in aquatic decomposer-shredder and periphyton-grazer systems
(2022)
Leaf-associated microbial decomposers as well as periphyton serve as important food sources for detritivorous and herbivorous macroinvertebrates (shredders and grazers) in streams. Shredders and grazers, in turn, provide not only collectors with food but also serve as prey for predators. Therefore, decomposer-shredder and periphyton-grazer systems (here summarized as freshwater biofilm-consumer systems) are highly important for the energy and nutrient supply in heterotrophic and autotrophic stream food webs. However, both systems can be affected by chemical stressors, amongst which antimicrobials (e.g., antibiotics, fungicides and algaecides) are of particular concern. Antimicrobials can impair shredders and grazers not only via waterborne exposure (waterborne effect pathway) but also through dietary exposure and microorganism-mediated alterations in the food quality of their diet (dietary effect pathway). Even though the relevance of the latter pathway received more attention in recent years, little is known about the mechanisms that are responsible for the observed effects in shredders and grazers. Therefore, the first objective of this thesis was to broaden the knowledge of indirect antimicrobial effects in a model shredder and grazer via the dietary pathway. Moreover, although freshwater biofilm-consumer systems are most likely exposed to antimicrobial mixtures comprised of different stressor groups, virtually nothing is known of these mixture effects in both systems. Therefore, the second objective was to assess and predict diet-related antimicrobial mixture effects in a model freshwater biofilm-consumer system. During this thesis, positive diet-related effects of a model antibiotic on the energy processing and physiology of the shredder Gammarus fossarum were observed. They were probably triggered by shifts in the leaf-associated microbial community in favor of aquatic fungi that increased the food quality of leaves for the shredder. Contrary to that, a model fungicide induced negative effects on the energy processing of G. fossarum via the dietary pathway, which can be explained by negative impacts on the microbial decomposition efficiency leading to a reduced food quality of leaf litter for gammarids. For diet-related antimicrobial effects in periphyton-grazer systems, a model algaecide altered the periphyton community composition by increasing nutritious and palatable algae. This resulted in an enhanced consumption and physiological fitness of the grazer Physella acuta. Finally, it was shown that complex horizontal interactions among leaf-associated microorganisms are involved, making diet-related antimicrobial mixture effects in the shredder G. fossarum difficult to predict. Thus, this thesis provides new insights into indirect diet-related effects of antimicrobials on shredders and grazers as well as demonstrates uncertainties of antimicrobial mixture effect predictions for freshwater biofilm-consumer systems. Moreover, the findings in this thesis are not only informative for regulatory authorities, as indirect effects and effects of mixtures across chemical classes are not considered in the environmental risk assessment of chemical substances, but also stimulate future research to close knowledge gaps identified during this work.
Beim Zugang zur dualen Berufsausbildung haben Jugendliche und junge Erwachsene mit Migrationshintergrund schlechtere Chancen in eine betriebliche Berufsausbildung einzumünden. Vermehrt wird ein Forschungsbedarf thematisiert, der den Blick darauf richtet, wie die entsprechenden Auswahlentscheidungen in den Betrieben getroffen werden. Die Dissertation setzt an dieser Frage an und befasst sich mittels eines biographischen Zugangs mit den Personalentscheiderinnen und Personalentscheidern, den sogenannten Gatekeepern, in den Betrieben. Im Erkenntnisinteresse steht die Frage, ob und wie biographische Erfahrungen Bedeutung für Auswahlentscheidungen zugunsten zugewanderter junger Menschen haben.
To render the surface of a material capable of withstanding mechanical and electrochemical loads, and to perform well in service, the deposition of a thin film or coating is a solution. In this project, such a thin film deposition is carried out. The coating material chosen is titanium nitride (TiN) which is a ceramic material known to possess a high hardness (>10 GPa) as well as good corrosion resistance. The method of deposition selected is high power impulse magnetron sputtering (HiPIMS) that results in coatings with high quality and enhanced properties. Sputtering is a physical process that represents the removal or dislodgment of surface atoms by energetic particle bombardment. The term magnetron indicates that a magnetic field is utilized to increase the efficiency of the sputtering process. In HiPIMS, a high power is applied in pulses of low duty cycles to a cathode that is sputtered and that consists of the coating material. As result of the high power, the ionization of the sputtered material takes place giving the possibility to control these species with electric and magnetic field allowing thereby the improvement and tuning of coating properties. However, the drawback of HiPIMS is a low deposition rate.
In this project, it is demonstrated first that it is possible to deposit TiN coating using HiPIMS with an optimized deposition rate, by varying the magnetic field strength. It was found that low magnetic field strength (here 22mT) results in a deposition rate similar to that of conventional magnetron sputtering in which the average power is applied continuously, called also direct current magnetron sputtering (dcMS). The high deposition rate at low magnetic field strength was attributed to a reduction in the back attraction probability of the sputtered species. The magnetic field strength did not show noticeable influence on the mechanical properties. The proposed explanation was that the considered peak current density interval 1.22-1.72 A∙cm-2 does not exhibit dramatic changes in the plasma dynamics.
In a second part, using the optimized deposition rate, the optimized chemical composition of TiN was determined. It was shown that the chemical composition of TiN does not significantly influence the corrosion performance but impacts considerably the mechanical properties. It was also shown that the corrosion resistance of the coatings deposited using HiPIMS was higher than that of the coatings deposited using dcMS.
The third study was the effect of annealing post deposition on the properties of TiN coating deposited using HiPIMS. The hardness of the coatings showed a maximum at 400°C reaching 24.8 GPa. Above 400°C however, a lowering of the hardness was measured and was due to the oxidation of TiN which led to the formation of TiN-TiO2 composites with lower mechanical properties.
The coating microscopic properties such as crystal orientation, residual stresses, average grain size were determined from X-ray diffraction data and the roughness was measured using atomic force microscopy. These properties were found to vary with the magnetic field strength, the chemical composition as well as the annealing temperature.
The use of agricultural plastic covers has become common practice for its agronomic benefits such as improving yields and crop quality, managing harvest times better, and increasing pesticide and water use efficiency. However, plastic covers are suspected of partially breaking down into smaller debris and thereby contributing to soil pollution with microplastics. A better understanding of the sources and fate of plastic debris in terrestrial systems has so far been hindered by the lack of adequate analytical techniques for the mass-based and polymer-selective quantification of plastic debris in soil. The aim of this dissertation was thus to assess, develop, and validate thermoanalytical methods for the mass-based quantification of relevant polymers in and around agricultural fields previously covered with fleeces, perforated foils, and plastic mulches. Thermogravimetry/mass spectrometry (TGA/MS) enabled direct plastic analyses of 50 mg of soil without any sample preparation. With polyethylene terephthalate (PET) as a preliminary model, the method limit of detection (LOD) was 0.7 g kg−1. But the missing chromatographic separation complicated the quantification of polymer mixtures. Therefore, a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was developed that additionally exploited the selective solubility of polymers in specific solvents prior to analysis. By dissolving polyethylene (PE), polypropylene (PP), and polystyrene (PS) in a mixture of 1,2,4-trichlorobenzene and p-xylene after density separation, up to 50 g soil became amenable to routine plastic analysis. Method LODs were 0.7–3.3 mg kg−1, and the recovery of 20 mg kg−1 PE, PP, and PS from a reference loamy sand was 86–105%. In the reference silty clay, however, poor PS recoveries, potentially induced by the additional separation step, suggested a qualitative evaluation of PS. Yet, the new solvent-based Py-GC/MS method enabled a first exploratory screening of plastic-covered soil. It revealed PE, PP, and PS contents above LOD in six of eight fields (6% of all samples). In three fields, PE levels of 3–35 mg kg−1 were associated with the use of 40 μm thin perforated foils. By contrast, 50 μm PE films were not shown to induce plastic levels above LOD. PP and PS contents of 5–19 mg kg−1 were restricted to single observations in four fields and potentially originated from littering. The results suggest that the short-term use of thicker and more durable plastic covers should be preferred to limit plastic emissions and accumulation in soil. By providing mass-based information on the distribution of the three most common plastics in agricultural soil, this work may facilitate comparisons with modeling and effect data and thus contribute to a better risk assessment and regulation of plastics. However, the fate of plastic debris in the terrestrial environment remains incompletely understood and needs to be scrutinized in future, more systematic research. This should include the study of aging processes, the interaction of plastics with other organic and inorganic compounds, and the environmental impact of biodegradable plastics and nanoplastics.