Refine
Year of publication
Document Type
- Master's Thesis (14)
- Part of Periodical (14)
- Doctoral Thesis (7)
- Bachelor Thesis (2)
- Study Thesis (2)
- Diploma Thesis (1)
- Habilitation (1)
Language
- English (41) (remove)
Keywords
- ontology (3)
- Linked Open Data (2)
- Maschinelles Lernen (2)
- mobile phone (2)
- multimedia metadata (2)
- API (1)
- Algolib (1)
- Analysis of social platform (1)
- Annotation (1)
- Articles for Deletion (1)
Institute
- Institute for Web Science and Technologies (41) (remove)
Graphs are known to be a good representation of structured data. TGraphs, which are typed, attributed, ordered, and directed graphs, are a very general kind of graphs that can be used for many domains. The Java Graph Laboratory (JGraLab) provides an efficient implementation of TGraphs with all their properties. JGraLab ships with many features, including a query language (GReQL2) for extracting data from a graph. However, it lacks a generic library for important common graph algorithms. This mid-study thesis extends JGraLab with a generic algorithm library called Algolib, which provides a generic and extensible implementation of several important common graph algorithms. The major aspects of this work are the generic nature of Algolib, its extensibility, and the methods of software engineering that were used for achieving both. Algolib is designed to be extensible in two ways. Existing algorithms can be extended for solving specialized problems and further algorithms can be easily added to the library.
The purpose of this thesis is to explore the sentiment distributions of Wikipedia concepts.
We analyse the sentiment of the entire English Wikipedia corpus, which includes 5,669,867 articles and 1,906,375 talks, by using a lexicon-based method with four different lexicons.
Also, we explore the sentiment distributions from a time perspective using the sentiment scores obtained from our selected corpus. The results obtained have been compared not only between articles and talks but also among four lexicons: OL, MPQA, LIWC, and ANEW.
Our findings show that among the four lexicons, MPQA has the highest sensitivity and ANEW has the lowest sensitivity to emotional expressions. Wikipedia articles show more sentiments than talks according to OL, MPQA, and LIWC, whereas Wikipedia talks show more sentiments than articles according to ANEW. Besides, the sentiment has a trend regarding time series, and each lexicon has its own bias regarding text describing different things.
Moreover, our research provides three interactive widgets for visualising sentiment distributions for Wikipedia concepts regarding the time and geolocation attributes of concepts.
Navigation is a natural way to explore and discover content in a digital environment. Hence, providers of online information systems such as Wikipedia---a free online encyclopedia---are interested in providing navigational support to their users. To this end, an essential task approached in this thesis is the analysis and modeling of navigational user behavior in information networks with the goal of paving the way for the improvement and maintenance of web-based systems. Using large-scale log data from Wikipedia, this thesis first studies information access by contrasting search and navigation as the two main information access paradigms on the Web. Second, this thesis validates and builds upon existing navigational hypotheses to introduce an adaptation of the well-known PageRank algorithm. This adaptation is an improvement of the standard PageRank random surfer navigation model that results in a more "reasonable surfer" by accounting for the visual position of links, the information network regions they lead to, and the textual similarity between the link source and target articles. Finally, using agent-based simulations, this thesis compares user models that have a different knowledge of the network topology in order to investigate the amount and type of network topological information needed for efficient navigation. An evaluation of agents' success on four different networks reveals that in order to navigate efficiently, users require only a small amount of high-quality knowledge of the network topology. Aside from the direct benefits to content ranking provided by the "reasonable surfer" version of PageRank, the empirical insights presented in this thesis may also have an impact on system design decisions and Wikipedia editor guidelines, i.e., for link placement and webpage layout.
Ontologies play an important role in knowledge representation for sharing information and collaboratively developing knowledge bases. They are changed, adapted and reused in different applications and domains resulting in multiple versions of an ontology. The comparison of different versions and the analysis of changes at a higher level of abstraction may be insightful to understand the changes that were applied to an ontology. While there is existing work on detecting (syntactical) differences and changes in ontologies, there is still a need in analyzing ontology changes at a higher level of abstraction like ontology evolution or refactoring pattern. In our approach we start from a classification of model refactoring patterns found in software engineering for identifying such refactoring patterns in OWL ontologies using DL reasoning to recognize these patterns.
The novel mobile application csxPOI (short for: collaborative, semantic, and context-aware points-of-interest) enables its users to collaboratively create, share, and modify semantic points of interest (POI). Semantic POIs describe geographic places with explicit semantic properties of a collaboratively created ontology. As the ontology includes multiple subclassiffcations and instantiations and as it links to DBpedia, the richness of annotation goes far beyond mere textual annotations such as tags. With the intuitive interface of csxPOI, users can easily create, delete, and modify their POIs and those shared by others. Thereby, the users adapt the structure of the ontology underlying the semantic annotations of the POIs. Data mining techniques are employed to cluster and thus improve the quality of the collaboratively created POIs. The semantic POIs and collaborative POI ontology are published as Linked Open Data.
Commonsense reasoning can be seen as a process of identifying dependencies amongst events and actions. Understanding the circumstances surrounding these events requires background knowledge with sufficient breadth to cover a wide variety of domains. In the recent decades, there has been a lot of work in extracting commonsense knowledge, a number of these projects provide their collected data as semantic networks such as ConceptNet and CausalNet. In this thesis, we attempt to undertake the Choice Of Plausible Alternatives (COPA) challenge, a problem set with 1000 questions written in multiple-choice format with a premise and two alternative choices for each question. Our approach differs from previous work by using shortest paths between concepts in a causal graph with the edge weight as causality metric. We use CausalNet as primary network and implement a few design choices to explore the strengths and drawbacks of this approach, and propose an extension using ConceptNet by leveraging its commonsense knowledge base.
In this paper, we compare two approaches for exploring large,rnhierarchical data spaces of social media data on mobile devicesrnusing facets. While the first approach arranges thernfacets in a 3x3 grid, the second approach makes use of arnscrollable list of facets for exploring the data. We have conductedrna between-group experiment of the two approachesrnwith 24 subjects (20 male, 4 female) executing the same set ofrntasks of typical mobile users" information needs. The resultsrnshow that the grid-based approach requires significantly morernclicks, but subjects need less time for completing the tasks.rnFurthermore, it shows that the additional clicks do not hamperrnthe subjects" satisfaction. Thus, the results suggest thatrnthe grid-based approach is a better choice for faceted searchrnon touchscreen mobile devices. To the best of our knowledge,rnsuch a summative evaluation of different approaches for facetedrnsearch on mobile devices has not been done so far.
Wikipedia is the biggest, free online encyclopaedia that can be expanded by any-one. For the users, who create content on a specific Wikipedia language edition, a social network exists. In this social network users are categorised into different roles. These are normal users, administrators and functional bots. Within the networks, a user can post reviews, suggestions or send simple messages to the "talk page" of another user. Each language in the Wikipedia domain has this type of social network.
In this thesis characteristics of the three different roles are analysed in order to learn how they function in one language network of Wikipedia and apply them to another Wikipedia network to identify bots. Timestamps from created posts are analysed to reveal noticeable characteristics referring to continuous messages, message rates and irregular behaviour of a user are discovered. Through this process we show that there exist differences between the roles for the mentioned characteristics.
Schema information about resources in the Linked Open Data (LOD) cloud can be provided in a twofold way: it can be explicitly defined by attaching RDF types to the resources. Or it is provided implicitly via the definition of the resources´ properties.
In this paper, we analyze the correlation between the two sources of schema information. To this end, we have extracted schema information regarding the types and properties defined in two datasets of different size. One dataset is a LOD crawl from TimBL- FOAF profile (11 Mio. triple) and the second is an extract from the Billion Triples Challenge 2011 dataset (500 Mio. triple). We have conducted an in depth analysis and have computed various entropy measures as well as the mutual information encoded in this two manifestations of schema information.
Our analysis provides insights into the information encoded in the different schema characteristics. It shows that a schema based on either types or properties alone will capture only about 75% of the information contained in the data. From these observations, we derive conclusions about the design of future schemas for LOD.
The availability of digital cameras and the possibility to take photos at no cost lead to an increasing amount of digital photos online and on private computers. The pure amount of data makes approaches that support users in the administration of the photo necessary. As the automatic understanding of photo content is still an unsolved task, metadata is needed for supporting administrative tasks like search or photo work such as the generation of photo books. Meta-information textually describes the depicted scene or consists of information on how good or interesting a photo is.
In this thesis, an approach for creating meta-information without additional effort for the user is investigated. Eye tracking data is used to measure the human visual attention. This attention is analyzed with the objective of information creation in the form of metadata. The gaze paths of users working with photos are recorded, for example, while they are searching for photos or while they are just viewing photo collections.
Eye tracking hardware is developing fast within the last years. Because of falling prices for sensor hardware such as cameras and more competition on the eye tracker market, the prices are falling, and the usability is increasing. It can be assumed that eye tracking technology can soon be used in everyday devices such as laptops or mobile phones. The exploitation of data, recorded in the background while the user is performing daily tasks with photos, has great potential to generate information without additional effort for the users.
The first part of this work deals with the labeling of image region by means of gaze data for describing the depicted scenes in detail. Labeling takes place by assigning object names to specific photo regions. In total, three experiments were conducted for investigating the quality of these assignments in different contexts. In the first experiment, users decided whether a given object can be seen on a photo by pressing a button. In the second study, participants searched for specific photos in an image search application. In the third experiment, gaze data was collected from users playing a game with the task to classify photos regarding given categories. The results of the experiments showed that gaze-based region labeling outperforms baseline approaches in various contexts. In the second part, most important photos in a collection of photos are identified by means of visual attention for the creation of individual photo selections. Users freely viewed photos of a collection without any specific instruction on what to fixate, while their gaze paths were recorded. By comparing gaze-based and baseline photo selections to manually created selections, the worth of eye tracking data in the identification of important photos is shown. In the analysis of the data, the characteristics of gaze data has to be considered, for example, inaccurate and ambiguous data. The aggregation of gaze data, collected from several users, is one suggested approach for dealing with this kind of data.
The results of the performed experiments show the value of gaze data as source of information. It allows to benefit from human abilities where algorithms still have problems to perform satisfyingly.