### Refine

#### Year of publication

- 2013 (2) (remove)

#### Document Type

- Doctoral Thesis (1)
- Part of Periodical (1)

#### Language

- English (2) (remove)

#### Keywords

- Abduktion <Logik> (1)
- Calculus (1)
- Deduktion (1)
- E-KRHyper (1)
- Fragebeantwortung (1)
- Logischer Schluss (1)
- Prädikatenlogik (1)
- Schlussfolgern (1)
- Theorem prover (1)
- Theorembeweiser (1)

#### Institute

- Institut für Informatik (2) (remove)

This dissertation investigates the usage of theorem provers in automated question answering (QA). QA systems attempt to compute correct answers for questions phrased in a natural language. Commonly they utilize a multitude of methods from computational linguistics and knowledge representation to process the questions and to obtain the answers from extensive knowledge bases. These methods are often syntax-based, and they cannot derive implicit knowledge. Automated theorem provers (ATP) on the other hand can compute logical derivations with millions of inference steps. By integrating a prover into a QA system this reasoning strength could be harnessed to deduce new knowledge from the facts in the knowledge base and thereby improve the QA capabilities. This involves challenges in that the contrary approaches of QA and automated reasoning must be combined: QA methods normally aim for speed and robustness to obtain useful results even from incomplete of faulty data, whereas ATP systems employ logical calculi to derive unambiguous and rigorous proofs. The latter approach is difficult to reconcile with the quantity and the quality of the knowledge bases in QA. The dissertation describes modifications to ATP systems in order to overcome these obstacles. The central example is the theorem prover E-KRHyper which was developed by the author at the Universität Koblenz-Landau. As part of the research work for this dissertation E-KRHyper was embedded into a framework of components for natural language processing, information retrieval and knowledge representation, together forming the QA system LogAnswer.
Also presented are additional extensions to the prover implementation and the underlying calculi which go beyond enhancing the reasoning strength of QA systems by giving access to external knowledge sources like web services. These allow the prover to fill gaps in the knowledge during the derivation, or to use external ontologies in other ways, for example for abductive reasoning. While the modifications and extensions detailed in the dissertation are a direct result of adapting an ATP system to QA, some of them can be useful for automated reasoning in general. Evaluation results from experiments and competition participations demonstrate the effectiveness of the methods under discussion.

E-KRHyper is a versatile theorem prover and model generator for firstorder logic that natively supports equality. Inequality of constants, however, has to be given by explicitly adding facts. As the amount of these facts grows quadratically in the number of these distinct constants, the knowledge base is blown up. This makes it harder for a human reader to focus on the actual problem, and impairs the reasoning process. We extend E-Hyper- underlying E-KRhyper tableau calculus to avoid this blow-up by implementing a native handling for inequality of constants. This is done by introducing the unique name assumption for a subset of the constants (the so called distinct object identifiers). The obtained calculus is shown to be sound and complete and is implemented into the E-KRHyper system. Synthetic benchmarks, situated in the theory of arrays, are used to back up the benefits of the new calculus.