Refine
Year of publication
Document Type
- Master's Thesis (11)
- Bachelor Thesis (10)
- Part of Periodical (7)
- Diploma Thesis (5)
- Doctoral Thesis (2)
- Study Thesis (2)
- Conference Proceedings (1)
Language
- English (38) (remove)
Keywords
- virtual reality (3)
- Bildverarbeitung (2)
- Computergraphik (2)
- Graphik (2)
- OpenGL (2)
- Volumen-Rendering (2)
- tracking (2)
- Adobe Flex (1)
- Automatische Klassifikation (1)
- Avatar (1)
Institute
- Institut für Computervisualistik (38) (remove)
The mitral valve is one of four human heart valves. It is located in the left heart and acts as a unidirectional passageway for blood between the left atrium and the left ventricle. A correctly functioning mitral valve prevents a backflow of blood into the pulmonary circulation (lungs) and thus constitutes a vital part of the cardiac cycle. Pathologies of the mitral valve can manifest in a variety of symptoms with severity ranging from chest pain and fatigue to pulmonary edema (fluid accumulation in the tissue and air space of lungs), which may ultimately cause respiratory failure.
Malfunctioning mitral valves can be restored through complex surgical interventions, which greatly benefit from intensive planning and pre-operative analysis. Visualization techniques provide a possibility to enhance such preparation processes and can also facilitate post-operative evaluation. The work at hand extends current research in this field, building upon patient-specific mitral valve segmentations developed at the German Cancer Research Center, which result in triangulated 3D models of the valve surface. The core of this work will be the construction of a 2D-view of these models through global parameterization, a method that can be used to establish a bijective mapping between a planar parameter domain and a surface embedded in higher dimensions.
A flat representation of the mitral valve provides physicians with a view of the whole surface at once, similar to a map. This allows assessment of the valve's area and shape without the need for different viewing angles. Parts of the valve that are occluded by geometry in 3D become visible in 2D.
An additional contribution of this work will be the exploration of different visualizations of the 3D and 2D mitral valve representations. Features of the valve can be highlighted by associating them with specified colors, which can for instance directly convey pathology indicators.
Quality and effectiveness of the proposed methods were evaluated through a survey conducted at the Heidelberg University Hospital.
With the emergence of current generation head-mounted displays (HMDs), virtual reality (VR) is regaining much interest in the field of medical imaging and diagnosis. Room-scale exploration of CT or MRI data in virtual reality feels like an intuitive application. However in VR retaining a high frame rate is more critical than for conventional user interaction seated in front of a screen. There is strong scientific evidence suggesting that low frame rates and high latency have a strong influence on the appearance of cybersickness. This thesis explores two practical approaches to overcome the high computational cost of volume rendering for virtual reality. One lies within the exploitation of coherency properties of the especially costly stereoscopic rendering setup. The main contribution is the development and evaluation of a novel acceleration technique for stereoscopic GPU ray casting. Additionally, an asynchronous rendering approach is pursued to minimize the amount of latency in the system. A selection of image warping techniques has been implemented and evaluated methodically, assessing the applicability for VR volume rendering.
Research has shown that people recognize personality, gender, inner states and many other items of information by simply observing human motion. Therefore the expressive human motion seems to be a valuable non-verbal communication channel. On the quest for more believable characters in virtual three dimensional simulations a great amount of visual realism has been achieved during the last decades. However, while interacting with synthetic characters in real-time simulations, often human users still sense an unnatural stiffness. This disturbance in believability is generally caused by a lack of human behavior simulation. Expressive motions, which convey personality and emotional states can be of great help to create more plausible and life-like characters. This thesis explores the feasibility of an automatic generation of emotionally expressive animations from given neutral character motions. Such research is required since common animation methods, such as manual modeling or motion capturing techniques, are too costly to create all possible variations of motions needed for interactive character behavior. To investigate how emotions influence human motion relevant literature from various research fields has been viewed and certain motion rules and features have been extracted. These movement domains were validated in a motion analysis and implemented in a system in an exemplary manner capable of automating the expression of angry, sad and happy states in a virtual character through its body language. Finally, the results were evaluated in user test.
The goal of this minor thesis is to integrate a robotic arm into an existing robotics software. A robot built on top of this stack should be able to participate successfully RoboCup @Home league. The robot Lisa (Lisa is a service android) needs to manipulate objects, lifting them from shelves or handing them to people. Up to now, the only possibility to do this was a small gripper attached to the robot platform. A "Katana Linux Robot" of Swiss manufacturer Neuronics has been added to the robot for this thesis. This arm needs a driver software and path planner, so that the arm can reach its goal object "intelligently", avoiding obstacles and creating smooth, natural motions.
We present a non-linear camera pose estimator, which is able to handle a combined input of point and line feature correspondences. For three or more correspondences, the estimator works on any arbitrary number and choice of the feature type, which provides an estimation of the pose on a preferably small and flexible amount of 2D-3D correspondences. We also give an analysis of different minimization techniques, parametrizations of the pose data, and of error measurements between 2D and 3D data. These will be tested for the usage of point features, lines and the combination case. The result shows the most stable and fast working non-linear parameter set for pose estimation in model-based tracking.
In recent years head mounted displays (HMD) and their abilities to create virtual realities comparable with the real world moved more into the focus of press coverage and consumers. The reason for this lies in constant improvements in available computing power, miniaturisation of components as well as the constantly shrinking power consumption. These trends originate in the general technical progress driven by advancements made in smartphone sector. This gives more people than ever access to the required components to create these virtual realities. However at the same time there is only limited research which uses the current generation of HMDs especially when comparing the virtual and real world against each other. The approach of this thesis is to look into the process of navigating both real and virtual spaces while using modern hardware and software. One of the key areas are the spatial and peripheral perception without which it would be difficult to navigate a given space. The influence of prior real and virtual experiences on these will be another key aspect. The final area of focus is the influence on the emotional state and how it compares to the real world. To research these influences a experiment using the Oculus Rift DK2 HMD will be held in which subjects will be guided through a real space as well as a virtual model of it. Data will be gather in a quantitative manner by using surveys. Finally, the findings will be discussed based on a statistical evaluation. During these tests the different perception of distances and room size will the compared and how they change based on the current reality. Furthermore, the influence of prior spatial activities both in the real and the virtual world will looked into. Lastly, it will be checked how real these virtual worlds are and if they are sufficiently sophisticated to trigger the same emotional responses as the real world.
Deformable Snow Rendering
(2019)
Accurate snow simulation is key to capture snow's iconic visuals. Intricate
methods exist that attempt to grasp snow behaviour in a holistic manner. Computational complexity prevents them from reaching real-time performance. This thesis presents three techniques making use of the GPU that focus on the deformation of a snow surface in real-time. The approaches are examined by their ability to scale with an increasing number of deformation actors and their visual portrayal of snow deformation. The findings indicate that the approaches maintain real-time performance well into several hundred individual deformation actors. However, these approaches each have their individual restrictions handicapping the visual results. An experimental approach is to combine the techniques at reduced deformation actor count to benefit from the detailed, merged deformation pattern.
The development of a game engine is considered a non-trivial problem. [3] The architecture of such simulation software must be able to manage large amounts of simulation objects in real-time while dealing with “crosscutting concerns” [3,p. 36] between subsystems. The use of object oriented paradigms to model simulation objects in class hierarchies has been reported as incompatible with constantly changing demands during game development [2, p. 9], resulting in anti-patterns and eventual, messy refactoring.[13]
Alternative architectures using data oriented paradigms revolving around object composition and aggregation have been proposed as a result. [13, 9, 1, 11]
This thesis describes the development of such an architecture with the explicit goals to be simple, inherently compatible with data oriented design, and to make reasoning about performance characteristics possible. Concepts are formally defined to help analyze the problem and evaluate results. A functional implementation of the architecture is presented together with use cases common to simulation software.
In this thesis we present an approach to track a RGB-D camera in 6DOF andconstruct 3D maps. We first acquire, register and synchronize RGB and depth images. After preprocessing we extract FAST features and match them between two consecutive frames. By depth projection we regain the z-value for the inlier correspondences. Afterwards we estimate the camera motion by 3D point set alignment between the correspondence set using least-squares. This local motion estimate is incrementally applied to a global transformation. Additionally wernpresent methods to build maps based on point cloud data acquired by a RGB-D camera. For map creation we use the OctoMap framework and optionally create a colored point cloud map. The system is evaluated with the widespread RGB-D benchmark.
Six and Gimmler have identified concrete capabilities that enable users to use the Internet in a competent way. Their media competence model can be used for the didactical design of media usage in secondary schools. However, the special challenge of security awareness is not addressed by the model. In this paper, the important dimension of risk and risk assessment will be introduced into the model. This is especially relevant for the risk of the protection of personal data and privacy. This paper will apply the method of IT risk analysis in order to select those dimensions of the Six/Gimmler media competence model that are appropriate to describe privacy aware Internet usage. Privacy risk aware decisions for or against the Internet usage is made visible by the trust model of Mayer et al.. The privacy extension of the competence model will lead to a measurement of the existing privacy awareness in secondary schools, which, in turn, can serve as a didactically well-reasoned design of Informatics modules in secondary schools. This paper will provide the privacy-extended competence model, while empirical measurement and module design is planned for further research activities.