Refine
Year of publication
- 2017 (32) (remove)
Document Type
- Doctoral Thesis (32) (remove)
Keywords
- AD(H)S Bindung (1)
- ADHS (1)
- ADS (1)
- Analoge Methoden (1)
- Aquatic Guidance Document (1)
- Bestäubung (1)
- Betriebspädagogik (1)
- Bill Clinton (1)
- Biodiversität (1)
- Empirische Forschung (1)
Institute
- Fachbereich 7 (9)
- Fachbereich 5 (4)
- Institut für Integrierte Naturwissenschaften, Abt. Chemie (4)
- Institut für Umweltwissenschaften (4)
- Institut für Erziehungswissenschaft (3)
- Institut für Sozialwissenschaften (2)
- Fachbereich 6 (1)
- Institut für Informatik (1)
- Institut für Integrierte Naturwissenschaften, Abt. Biologie (1)
- Institut für Integrierte Naturwissenschaften, Abt. Geographie (1)
World’s ecosystems are under great pressure satisfying anthropogenic demands, with freshwaters being of central importance. The Millennium Ecosystem Assessment has identified anthropogenic land use and associated stressors as main drivers in jeopardizing stream ecosystem functions and the
biodiversity supported by freshwaters. Adverse effects on the biodiversity of freshwater organisms, such as macroinvertebrates, may propagate to fundamental ecosystem functions, such as organic matter breakdown (OMB) with potentially severe consequences for ecosystem services. In order to adequately protect and preserve freshwater ecosystems, investigations regarding potential and observed as well as direct and indirect effects of anthropogenic land use and associated stressors (e.g. nutrients, pesticides or heavy metals) on ecosystem functioning and stream biodiversity are needed. While greater species diversity most likely benefits ecosystem functions, the direction and magnitude of changes in ecosystem functioning depends primarily on species functional traits. In this context, the functional diversity of stream organisms has been suggested to be a more suitable predictor of changes in ecosystem functions than taxonomic diversity.
The thesis aims at investigating effects of anthropogenic land use on (i) three ecosystem functions by anthropogenic toxicants to identify effect thresholds (chapter 2), (ii) the organic matter breakdown by three land use categories to identify effects on the functional level (chapter 3) and (iii)on the stream community along an established land-use gradient to identify effects on the community level.
In chapter 2, I reviewed the literature regarding pesticide and heavy metal effects on OMB, primary production and community respiration. From each reviewed study that met inclusion criteria, the toxicant concentration resulting in a reduction of at least 20% in an ecosystem function was standardized based on laboratory toxicity data. Effect thresholds were based on the relationship between ecosystem functions and standardized concentration-effect relationships. The analysis revealed that more than one third of pesticide observations indicated reductions in ecosystem functions at concentrations that are assumed being protective in regulation. However, high variation within and between studies hampered the derivation of a concentration-effect relationship and thus effect thresholds.
In chapter 3, I conducted a field study to determine the microbial and invertebrate-mediated OMB by deploying fine and coarse mesh leaf bags in streams with forested, agricultural, vinicultural
and urban riparian land use. Additionally, physicochemical, geographical and habitat parameters were monitored to explain potential differences in OMB among land use types and sites. Regarding results, only microbial OMB differed between land use types. The microbial OMB showed a negative relationship with pH while the invertebrate-mediated OMB was positively related to tree cover. OMB responded to stressor gradients rather than directly to land use.
In chapter 4, macroinvertebrates were sampled in concert with leaf bag deployment and after species identification (i) the taxonomic diversity in terms of Simpson diversity and total taxonomic
richness (TTR) and (ii) the functional diversity in terms of bio-ecological traits and Rao’s quadratic entropy was determined for each community. Additionally, a land-use gradient was established and the response of the taxonomic and functional diversity of invertebrate communities along this gradient was investigated to examine whether these two metrics of biodiversity are predictive for the rate of OMB. Neither bio-ecological traits nor the functional diversity showed a significant relationship with
OMB. Although, TTR decreased with increasing anthropogenic stress and also the community structure and 26 % of bio-ecological traits were significantly related to the stress gradient, any of these shifts propagated to OMB.
Our results show that the complexity of real-world situations in freshwater ecosystems impedes the effect assessment of chemicals and land use for functional endpoints, and consequently our potential to predict changes. We conclude that current safety factors used in chemical risk assessment may not be sufficient for pesticides to protect functional endpoints. Furthermore, simplifying real-world stressor gradients into few land use categories was unsuitable to predict and quantify losses in OMB. Thus, the monitoring of specific stressors may be more relevant than crude land use categories to detect effects on ecosystem functions. This may, however, limit the large scale assessment of the status of OMB. Finally, despite several functional changes in the communities the functional diversity over several trait modalities remained similar. Neither taxonomic nor functional diversity were suitable predictors of OMB. Thus, when understanding anthropogenic impacts on the linkage between biodiversity and ecosystem functioning is of main interest, focusing on diversity metrics that are clearly linked to the stressor in question (Jackson et al. 2016) or integrating taxonomic and functional metrics (Mondy et al., 2012) might enhance our predictive capacity.
Statistical eco(-toxico)logy
(2017)
Freshwaters are of immense importance for human well-being.
Nevertheless, they are currently facing unprecedented levels of threat from habitat loss and degradation, overexploitation, invasive species and
pollution.
To prevent risks to aquatic ecosystems, chemical substances, like agricultural pesticides, have to pass environmental risk assessment (ERA) before entering the market.
Concurrently, large-scale environmental monitoring is used for surveillance of biological and chemical conditions in freshwaters.
This thesis examines statistical methods currently used in ERA.
Moreover, it presents a national-scale compilation of chemical monitoring data, an analysis of drivers and dynamics of chemical pollution in streams and, provides a large-scale risk assessment by combination with results from ERA.
Additionally, software tools have been developed to integrate different datasets used in ERA.
The thesis starts with a brief introduction to ERA and environmental monitoring and gives an overview of the objectives of the thesis.
Chapter 2 addresses experimental setups and their statistical analyses using simulations.
The results show that current designs exhibit unacceptably low statistical power, that statistical methods chosen to fit the type of data provide higher power and that statistical practices in ERA need to be revised.
In chapter 3 we compiled all available pesticide monitoring data from Germany.
Hereby, we focused on small streams, similar to those considered in ERA and used threshold concentrations derived during ERA for a large-scale assessment of threats to freshwaters from pesticides.
This compilation resulted in the most comprehensive dataset on pesticide exposure currently available for Germany.
Using state-of-the-art statistical techniques, that explicitly take the limits of quantification into account, we demonstrate that 25% of small streams are at threat from pesticides.
In particular neonicotinoid pesticides are responsible for these threats.
These are associated with agricultural intensity and can be detected even at low levels of agricultural use.
Moreover, our results indicated that current monitoring underestimates pesticide risks, because of a sampling decoupled from precipitation events.
Additionally, we provide a first large-scale study of annual pesticide exposure dynamics.
Chapters 4 and 5 describe software solutions to simplify and accelerate the integration of data from ERA, environmental monitoring and ecotoxicology that is indispensable for the development of landscape-level risk assessment.
Overall, this thesis contributes to the emerging discipline of statistical ecotoxicology and shows that pesticides pose a large-scale threat to small streams.
Environmental monitoring can provide a post-authorisation feedback to ERA.
However, to protect freshwater ecosystems ERA and environmental monitoring need to be further refined and we provide software solutions to utilise existing data for this purpose.
Die Analyse ortsbezogener Strukturdaten und Merkmale ist eine der wesentlichen Voraussetzungen für die Bewertung von Standorten und Räumen. Durch die Erfassung der lokalen Ausprägung ausgewählter Standortfaktoren und unter Zuhilfenahme eines Geographischen Informationssystems werden in der vorliegenden Dissertation die Städte und Gemeinden des hessischen Rheingau-Taunus-Kreises kategorisiert und miteinander verglichen. Hierbei erfolgt eine besondere Fokussierung auf die lokal bestehende technische und soziale Infrastruktur, um vorrangig das vorhandene Gewerbe- und Wohnumfeld sowie die darüber hinaus existierenden räumlichen Disparitäten eingehend veranschaulichen und beurteilen zu können.
Pelagic oxyclines, the transition zone between oxygen rich surface waters and oxygen depleted deep waters, are a common characteristic of eutrophic lakes during summer stratification. They can have tremendous effects on the biodiversity and the ecosystem functioning of lakes and, to add insult to injury, are expected to become more frequent and more pronounced as climate warming progresses. On these grounds, this thesis endeavors to advance the understanding of formation, persistence, and consequences of pelagic oxyclines: We test, whether the formation of metalimnetic oxygen minima is intrinsically tied to a locally enhanced oxygen consuming process, investigate the relative importance of vertical physical oxygen transport and biochemical oxygen consumption for the persistence of pelagic oxyclines, and finally assess their potential consequences for whole lake cycling. To pursue these objectives, the present thesis nearly exclusively resorts to in situ measurements. Field campaigns were conducted at three lakes in Germany featuring different types of oxyclines and resolved either a short (hours to days) or a long (weeks to months) time scale. Measurements comprised temperature, current velocity, and concentrations of oxygen and reduced substances in high temporal and vertical resolution. Additionally, vertical transport was estimated by applying the eddy correlation technique within the pelagic region for the first time. The thesis revealed, that the formation of metalimnetic oxygen minima does not necessarily depend on locally enhanced oxygen depletion, but can solely result from gradients and curvatures of oxygen concentration and depletion and their relative position to each other. Physical oxygen transport was found to be relevant for oxycline persistence when it considerably postponed anoxia on a long time scale. However, its influence on oxygen dynamics was minor on short time scales, although mixing and transport were highly variable. Biochemical consumption always dominated the fate of oxygen in pelagic oxyclines. It was primarily determined by the oxidative breakdown of organic matter originating from the epilimnion, whereas in meromictic lakes, the oxidation of reduced substances dominated. Beyond that, the results of the thesis emphasize that pelagic oxyclines can be a hotspot of mineralization and, hence, short-circuit carbon and nutrient cycling in the upper part of the water column. Overall, the present thesis highlights the importance of considering physical transport as well as biochemical cycling in future studies.
This dissertation will discuss the theories of exponents of the philosophy of dialogue. Through that it shall establish the basis to reflect entrepreneurial leadership action. The goal is to find an approach for the development of a dialogical leadership culture.
The empirical part shall examine on what basis, in correlation with a dialogical leadership style, subjective assumptions are made by managers in their leadership action who work in inpatient nursing services. Furthermore, it shall address the question of how those subjective assumptions can be considered and utilized towards establishing future dialogically oriented leadership cultures and the development of coinciding management personnel.
It shall also debate the question to what extent the philosophy of dialogue includes theoretical concepts which can be used to describe a leadership culture. The intellectual approach of Martin Bubers is especially taken into consideration.
Based on these theoretical grounds, the attempt shall be made to develop the basic intention of a dialogical leadership culture which will appropriately justify a didactical concept for the development of management personnel in nursing services.
An assistance system has been developed for the purpuse of supporting the surgeon during the repositioning phase of intramedullary nailing of femural shaft fractures. As a basic principle the high forces generated by femural muscles and ligaments are taken by a linear sledge and a threaded rod. In order to move bone fragments directly Schanz screws are used as bone-machine interface. Two more Schanz screws are used for fine tuning orientation and position of the fragments according to the well known Joystick technique. The screws are fixed to two articulated arms, one passive and one fully robotic with manipulator. Thanks to the serial kinematic configuration of the system only minmal space of the surgeons working area gets occupied. Running a realtime operating system, the central control unit consits could be implemented as an embedded system comprising of a ARM Cortex-M0 microcontroller at it’s heart. This enables realtime computation and motor control of each joints value of the robotic arm using inverse kinematics. As inverse kinematics solver the iterative FABRIK algorithm was chosen. Serving as innovative and single user interface for the surgeon an optical force-torque sensor is used. The robotic arm always follows the surgeons motion when interacting with the sensor. Using the proposed demonstrator system a positioning resulution of <0,1mm could be accomplished. Thus by using the proposed solution during intramedullary nailing of femural shaft fractures a tremendous gain in positioning precision of bone fragments can be achieved. Furthermore a massive reduction of x-ray exposition of the surgeon is possible when applying the proposed approach. Also this approach enables the chance of cost reduction of femural fracture therapy due to reduction of needed time and staff.
The Web contains some extremely valuable information; however, often poor quality, inaccurate, irrelevant or fraudulent information can also be found. With the increasing amount of data available, it is becoming more and more difficult to distinguish truth from speculation on the Web. One of the most, if not the most, important criterion used to evaluate data credibility is the information source, i.e., the data origin. Trust in the information source is a valuable currency users have to evaluate such data. Data popularity, recency (or the time of validity), reliability, or vagueness ascribed to the data may also help users to judge the validity and appropriateness of information sources. We call this knowledge derived from the data the provenance of the data. Provenance is an important aspect of the Web. It is essential in identifying the suitability, veracity, and reliability of information, and in deciding whether information is to be trusted, reused, or even integrated with other information sources. Therefore, models and frameworks for representing, managing, and using provenance in the realm of Semantic Web technologies and applications are critically required. This thesis highlights the benefits of the use of provenance in different Web applications and scenarios. In particular, it presents management frameworks for querying and reasoning in the Semantic Web with provenance, and presents a collection of Semantic Web tools that explore provenance information when ranking and updating caches of Web data. To begin, this thesis discusses a highly exible and generic approach to the treatment of provenance when querying RDF datasets. The approach re-uses existing RDF modeling possibilities in order to represent provenance. It extends SPARQL query processing in such a way that given a SPARQL query for data, one may request provenance without modifying it. The use of provenance within SPARQL queries helps users to understand how RDF facts arederived, i.e., it describes the data and the operations used to produce the derived facts. Turning to more expressive Semantic Web data models, an optimized algorithm for reasoning and debugging OWL ontologies with provenance is presented. Typical reasoning tasks over an expressive Description Logic (e.g., using tableau methods to perform consistency checking, instance checking, satisfiability checking, and so on) are in the worst case doubly exponential, and in practice are often likewise very expensive. With the algorithm described in this thesis, however, one can efficiently reason in OWL ontologies with provenance, i.e., provenance is efficiently combined and propagated within the reasoning process. Users can use the derived provenance information to judge the reliability of inferences and to find errors in the ontology. Next, this thesis tackles the problem of providing to Web users the right content at the right time. The challenge is to efficiently rank a stream of messages based on user preferences. Provenance is used to represent preferences, i.e., the user defines his preferences over the messages' popularity, recency, etc. This information is then aggregated to obtain a joint ranking. The aggregation problem is related to the problem of preference aggregation in Social Choice Theory. The traditional problem formulation of preference aggregation assumes a I fixed set of preference orders and a fixed set of domain elements (e.g. messages). This work, however, investigates how an aggregated preference order has to be updated when the domain is dynamic, i.e., the aggregation approach ranks messages 'on the y' as the message passes through the system. Consequently, this thesis presents computational approaches for online preference aggregation that handle the dynamic setting more efficiently than standard ones. Lastly, this thesis addresses the scenario of caching data from the Linked Open Data (LOD) cloud. Data on the LOD cloud changes frequently and applications relying on that data - by pre-fetching data from the Web and storing local copies of it in a cache - need to continually update their caches. In order to make best use of the resources (e.g., network bandwidth for fetching data, and computation time) available, it is vital to choose a good strategy to know when to fetch data from which data source. A strategy to cope with data changes is to check for provenance. Provenance information delivered by LOD sources can denote when the resource on the Web has been changed last. Linked Data applications can benefit from this piece of information since simply checking on it may help users decide which sources need to be updated. For this purpose, this work describes an investigation of the availability and reliability of provenance information in the Linked Data sources. Another strategy for capturing data changes is to exploit provenance in a time-dependent function. Such a function should measure the frequency of the changes of LOD sources. This work describes, therefore, an approach to the analysis of data dynamics, i.e., the analysis of the change behavior of Linked Data sources over time, followed by the investigation of different scheduling update strategies to keep local LOD caches up-to-date. This thesis aims to prove the importance and benefits of the use of provenance in different Web applications and scenarios. The exibility of the approaches presented, combined with their high scalability, make this thesis a possible building block for the Semantic Web proof layer cake - the layer of provenance knowledge.