Modern agriculture is a dominant land use in Europe, although it has been associated with negative effects on biodiversity in agricultural landscapes. One species-rich insect group in agro-ecosystems is the Lepidoptera (moths and butterflies); however, the populations of a number of Lepidoptera species are currently declining. The aims of this thesis were to assess the amount and structure of field margins in agricultural landscapes, study the effects of realistic field margin input rates of agrochemicals (fertilizer and pesticides) on Lepidoptera, and provide information on moth pollination services.
In general, field margins are common semi-natural habitat elements in agro-ecosystems; however, data on the structure, size, and width of field margins is limited. An assessment in two German agricultural landscapes (4,000 ha each) demonstrated that many of the evaluated field margins were less than 3 m wide (Rhineland‐Palatinate: 85% of margin length; Brandenburg: 45% margin length). In Germany, risk mitigation measures (such as buffer zones) to reduce pesticide inputs to terrestrial non-crop habitats do not have to be established by farmers next to narrow field margins. Thus, narrow field margins receive inputs of agrochemicals, especially via overspray and spray drift. These field margins were used as a development habitat for caterpillars, but the mean abundance of caterpillars was 35 – 60% lower compared with that in meadows. Caterpillars were sensitive to realistic field margin input rates of insecticide (pyrethroid, lambda-cyhalothrin) in a field experiment as well as in laboratory experiments. Moreover, 40% fewer Hadena bicruris eggs were observed on Silene latifolia plants treated with this insecticide compared with control plants, and the flowers of these insecticide-treated plants were less likely to be pollinated by moths. In addition, realistic field margin input rates of herbicides can also affect Lepidoptera. Ranunculus acris L. plants treated with sublethal rates of a sulfonylurea herbicide were used as host plants for Mamestra brassicae L. caterpillars, which resulted in significantly lower caterpillar weights, increased time to pupation, and increased overall development time compared with caterpillars feeding on control plants. These results might have been caused by lower nutritional value of the herbicide-treated plants or increased concentrations of secondary metabolites involved in plant defense. Fertilizer applications slightly increased the caterpillar abundance in the field experiment. However, fertilizers reduce plant diversity in the long term and thus, most likely, also reduce caterpillar diversity.
Moths such as Noctuidae and Sphingidae have been observed to act as pollinators for numerous plant species, including a number of Orchidaceae and Caryophyllaceae. Although in temperate agro-ecosystems moths are less likely to act as the main pollinators for crops, they can pollinate non-crop plants in semi-natural habitats. Currently, the role of moths as pollinators appears to be underestimated, and long-term research focusing on ecosystems is necessary to address temporal fluctuations in their abundance and community composition.
Lepidoptera represent a diverse organism group in agricultural landscapes and fulfill essential ecosystem services, such as pollination. To better protect moths and butterflies, agrochemical inputs to (narrow) field margins habitats should be reduced, for example, via risk mitigation measures and agro-environmental schemes.
Larvae of Cx.pipiens coocurred with Cladocera, but the latter established delayed in time. Biotope structure influenced time of species occurrence with ponds at reed-covered wetlands favouring crustacean development, while ponds at grassland biotopes favoured colonization by mosquito larvae. The mechanisms driving the negative effect of crustaceans on mosquito larvae were investigated within an experiment under artificial conditions. Crustacean communities were found to reduce both oviposition and larval development of Cx.pipiens. Crustacean communities of high taxa diversity, including both predatory and competing crustaceans, were more effective compared with crustacean communities dominated by single taxa. Presence of crustacean communities characterised by high taxa diversity increased the sensitivity of Cx.pipiens larvae towards Bti and prolonged the time of recolonization. In a final step the combined approach, using Bti and crustaceans, was evaluated under field conditions. The joint application of Bti and crustaceans was found to reduce mosquito larval populations over the whole observation period, while single application of Bti caused only short-term reduction of mosquito larvae. Single application of crustaceans had no significant effect, because high abundances of prior established mosquito larvae impeded propagation of crustaceans. At combined treatment, mosquito larvae were reduced by Bti application and hence crustaceans were able to proliferate without disturbance by interspecific competition. In conclusion, natural competitors were found to have a strong negative impact on mosquito larval populations. However, a time span of about 2 weeks has to be bridged, before crustacean communities reached a level sufficient for mosquito control. Results of a combined approach, complementing the short-term effect of the biological insecticide Bti with the long-term effect of crustaceans, were promising. Using natural competitors within an integrated control strategy could be an important tool for an effective, environmentally friendly and sustainable mosquito management.