Refine
Document Type
- Doctoral Thesis (1)
- Part of Periodical (1)
- Study Thesis (1)
Keywords
- Semantic Web (2)
- Bildverarbeitung (1)
- ColorSym (1)
- Farbsymmetrie (1)
- IT-Security (1)
- OWL (1)
- Ornamentklassifikation (1)
- RDF (1)
- Security Requirements (1)
- Semantic Web Data (1)
Confidentiality, integrity, and availability are often listed as the three major requirements for achieving data security and are collectively referred to as the C-I-A triad. Confidentiality of data restricts the data access to authorized parties only, integrity means that the data can only be modified by authorized parties, and availability states that the data must always be accessible when requested. Although these requirements are relevant for any computer system, they are especially important in open and distributed networks. Such networks are able to store large amounts of data without having a single entity in control of ensuring the data's security. The Semantic Web applies to these characteristics as well as it aims at creating a global and decentralized network of machine-readable data. Ensuring the confidentiality, integrity, and availability of this data is therefore also important and must be achieved by corresponding security mechanisms. However, the current reference architecture of the Semantic Web does not define any particular security mechanism yet which implements these requirements. Instead, it only contains a rather abstract representation of security.
This thesis fills this gap by introducing three different security mechanisms for each of the identified security requirements confidentiality, integrity, and availability of Semantic Web data. The mechanisms are not restricted to the very basics of implementing each of the requirements and provide additional features as well. Confidentiality is usually achieved with data encryption. This thesis not only provides an approach for encrypting Semantic Web data, it also allows to search in the resulting ciphertext data without decrypting it first. Integrity of data is typically implemented with digital signatures. Instead of defining a single signature algorithm, this thesis defines a formal framework for signing arbitrary Semantic Web graphs which can be configured with various algorithms to achieve different features. Availability is generally supported by redundant data storage. This thesis expands the classical definition of availability to compliant availability which means that data must only be available as long as the access request complies with a set of predefined policies. This requirement is implemented with a modular and extensible policy language for regulating information flow control. This thesis presents each of these three security mechanisms in detail, evaluates them against a set of requirements, and compares them with the state of the art and related work.
Iterative Signing of RDF(S) Graphs, Named Graphs, and OWL Graphs: Formalization and Application
(2013)
When publishing graph data on the web such as vocabulariesrnusing RDF(S) or OWL, one has only limited means to verify the authenticity and integrity of the graph data. Today's approaches require a high signature overhead and do not allow for an iterative signing of graph data. This paper presents a formally defined framework for signing arbitrary graph data provided in RDF(S), Named Graphs, or OWL. Our framework supports signing graph data at different levels of granularity: minimum self-contained graphs (MSG), sets of MSGs, and entire graphs. It supports for an iterative signing of graph data, e. g., when different parties provide different parts of a common graph, and allows for signing multiple graphs. Both can be done with a constant, low overhead for the signature graph, even when iteratively signing graph data.
Das Forschungsprojekt Bildanalyse zur Ornamentklassifikation hat es sich zur Aufgabe gemacht, ornamentale Strukturen in Bildern computergestützt zu lokalisieren, analysieren und klassifizieren. Grundlage des Projekts bildet eine umfangreiche Bilddatenbank, deren Abbildungen manuell vorsortiert sind. Durch Kombinationen mit Methoden der Bildverabeitung und der Verwendung von Wissensdatenbanken (Knowledge Databases) soll diese Kategorisierung weiter verfeinert werden. Sämtliche Bilder durchlaufen bis zum Prozess der Ornamentklassifikation mehrere Vorverarbeitungsschritte. Beginnend mit einem Normalisierungsprozess, bei dem das Bild u. a. entzerrt und entrauscht wird, werden im Anschluss Interessensregionen selektiert. Diese Regionen bilden die Grundlage für das spätere Lokalisieren der Ornamente. Aus ihnen werden mit unterschiedlichen Verfahren Merkmale extrahiert, die wiederum in der Datenbank gespeichert werden. In dieser Arbeit wurde ein weiteres solches Verfahren implementiert und auf seine mögliche Verwendung in dem Projekt untersucht.