Refine
Keywords
- Netzhaut (1) (remove)
In dieser Arbeit wurden die vorhandenen Verfahren zur Gefäßsegmentierung eingehend untersucht. Die Vielfalt der verwendeten Ansätze wurde in unterschiedlichen Klassifizierungsversuchen aufgezeigt. Es gibt bisher kein Verfahren zur Segmentierung von Netzhautbildern, das für alle Arten von Bildern gleich gute Ergebnisse liefert. Alle Verfahren haben ihre Stärken und Schwächen. Unter Berücksichtigung der verwendeten Heidelberg Retina Tomographie Bilder wurde ein mögliches Verfahren zur Segmentierung der Blutgefäße mit angepassten Filtern ausgewählt, umgesetzt und evaluiert. Abweichend zu dem traditionellen Konzept der angepassten Filter, wird in diesem Verfahren die Filtermaske nicht rotiert, um alle Gefäßrichtungen zu erfassen, sondern es wird ein quadratischer LoG-Filter angewendet. Die Filter- und andere Parameter werden nicht während des Verarbeitungsprozesses verändert, sondern sie werden im voraus berechnet und an die Eigenschaften der HRT Bilder angepasst. Dadurch ist dieses Verfahren weniger rechenaufwendig. Zur Detektion der Gefäße werden die linienähnlichen Strukturen hervorgehoben und danach mit einem passenden Schwellwert binarisiert. Deshalb ist ein hoher Kontrast zwischen dem Gefäß und dem Hintergrund, sowie eine gleichmäßige Ausleuchtung sehr wichtig. Dies wird in einem Vorverarbeitungsschritt [Chrastek04] erreicht. Bei den Verfahren mit angepassten Filtern ist ein Nachbearbeitungsprozess notwendig, um falsch detektierte Strukturen zu entfernen. Für die Nachbearbeitung wurden in diesem Verfahren die morphologischen Operatoren verwendet. Der Algorithmus zur Detektion der linienähnlichen Strukturen könnte sehr gut mit einem trackingbasierten Ansatz kombiniert werden, was den Nachbearbeitungsprozess mit morphologischen Operatoren ersetzten würde. Die Sensitivität des Segmentierungsalgorithmus mit vorher berechneten Parametern ist 81% und die Spezifität 96%. Eine leichte Änderung der verwendeten Parameter führt zu einer Variation diesen beiden Maßzahlen. Eine weitere Erhöhung der Sensitivität kann durch die Optimierung des Nachbearbeitungsprozesses erreicht werden. Vermeer et al. sind in deren Implementierung auf vergleichbare Ergebnisse für Sensitivität und Spezifität gekommen.