The bio-insecticide Bacillus thuringiensis israelensis (Bti) has worldwide become the most commonly used agentin mosquito control programs that pursue two main objectives: the control of vector-borne diseases and the reduction of nuisance, mainly coming frommosquitoes that emerge in large quantities from seasonal wetlands. The Upper Rhine Valley, a biodiversity hotspot in Germany, has been treated withBti for decades to reduce mosquito-borne nuisance and increase human well-being.Although Btiis presumed to be an environmentally safe agent,adverse effects on wetland ecosystems are still a matter of debate especially when it comes to long-term and indirect effects on non-target organisms. In light of the above, this thesis aims at investigating direct and indirect effects of Bti-based mosquito control on non-target organisms within wetland food chains.Effects were examinedin studies with increasingeco(toxico)logical complexity, ranging from laboratory over mesocosm to field approaches with a focus on the non-biting Chironomidae and amphibian larvae (Rana temporaria, Lissotriton sp.).In addition, public acceptance of environmentally less invasive alternative mosquito control methods was evaluated within surveys among the local population.
Chironomids were the most severely affected non-target aquatic invertebrates. Bti substantially reduced larval and adult chironomid abundances and modified their species composition. Repeated exposures to commonly used Bti formulations induced sublethal alterations of enzymatic biomarkers activityin frog tadpoles. Bti-induced reductions of chironomid prey availability indirectly decreased body size of newts at metamorphosis and increased predation on newt larvae in mesocosm experiments. Indirect effects of severe reductions in midge biomassmight equally be passed through aquatic but also terrestrial food chains influencing predators of higher trophic levels. The majority ofaffectedpeople in the Upper Rhine Valley expressed a high willingness to contributefinancially to environmentally less harmful mosquito control.Alternative approaches could still include Bti applications excepting treatment of ecologically valuable areas. Potentially rising mosquito levels could be counteracted with local acting mosquito traps in domestic and urban areas because mosquito presence was experienced as most annoying in the home environment.
As Bti-based mosquito control can adversely affect wetland ecosystems, its large-scale applications, including nature conservation areas, should be considered more carefully to avoid harmful consequences for the environmentat the Upper Rhine Valley.This thesis emphasizesthe importance to reconsiderthe current practice of mosquito control and encourage research on alternative mosquito control concepts that are endorsed by the local population. In the context ofthe ongoing amphibian and insect declinesfurther human-induced effects onwetlands should be avoided to preserve biodiversity in functioning ecosystems.
Larvae of Cx.pipiens coocurred with Cladocera, but the latter established delayed in time. Biotope structure influenced time of species occurrence with ponds at reed-covered wetlands favouring crustacean development, while ponds at grassland biotopes favoured colonization by mosquito larvae. The mechanisms driving the negative effect of crustaceans on mosquito larvae were investigated within an experiment under artificial conditions. Crustacean communities were found to reduce both oviposition and larval development of Cx.pipiens. Crustacean communities of high taxa diversity, including both predatory and competing crustaceans, were more effective compared with crustacean communities dominated by single taxa. Presence of crustacean communities characterised by high taxa diversity increased the sensitivity of Cx.pipiens larvae towards Bti and prolonged the time of recolonization. In a final step the combined approach, using Bti and crustaceans, was evaluated under field conditions. The joint application of Bti and crustaceans was found to reduce mosquito larval populations over the whole observation period, while single application of Bti caused only short-term reduction of mosquito larvae. Single application of crustaceans had no significant effect, because high abundances of prior established mosquito larvae impeded propagation of crustaceans. At combined treatment, mosquito larvae were reduced by Bti application and hence crustaceans were able to proliferate without disturbance by interspecific competition. In conclusion, natural competitors were found to have a strong negative impact on mosquito larval populations. However, a time span of about 2 weeks has to be bridged, before crustacean communities reached a level sufficient for mosquito control. Results of a combined approach, complementing the short-term effect of the biological insecticide Bti with the long-term effect of crustaceans, were promising. Using natural competitors within an integrated control strategy could be an important tool for an effective, environmentally friendly and sustainable mosquito management.