The transport of pesticides from agricultural land into surface waters via diffuse entry pathways such as runoff is a major threat to aquatic ecosystems and their communities. Although certain risk mitigation measures are currently stipulated during pesticide product authorisation, further approaches might be needed to manage hot spots of pesticide exposure. Such a management is, for example, required by the European Union- directive for the sustainable use pesticides (2009/128/EC).
The need for mitigation measures was investigated within the present thesis at stream sites draining an arable and a vineyard region in Germany by characterising pesticide exposure following edge-of-field runoff and (expected) effects on the aquatic macroinvertebrates. The results of these field studies showed, that streams in both regions were exposed to pesticide concentrations suggesting effects on the macroinvertebrate community. In the arable region the observed toxicity was mainly attributed to the insecticides lambda-cyhalothrin (in the water-phase samples) and alpha-cypermethrin (in the suspended particle samples), whereas in the vineyard region fungicides were most important. Furthermore stream water and suspended particles sampled in the vineyard region showed critical copper concentrations, which might cause ecotoxicological effects in the field. In addition to pesticide exposure, in the arable region also the effects on aquatic macroinvertebrates were assessed in the field. Generally, invertebrate fauna was dominated by pesticide-tolerant species, which suggested a high pesticide exposure at almost all sites. The elevated levels of suspended particle contamination in terms of maximum toxic units per sample (logTUMax > -2) reflect also this result. At two sites that received high aqueous-phase entries of the insecticide lambda-cyhalothrin (logTUMax > -0.6), the abundance and number of sensitive species (indicated by the SPEcies At Risk index) decreased during the pesticide application period. In contrast, at sites characterised by low water-phase toxicity (logTUMax < -3.5), no acute significant negative effects on macroinvertebrates were observed. In conclusion these data showed that in both regions the implementation of risk mitigation measures is needed to protect the aquatic communities.
To mitigate runoff-related pesticide entries, riparian buffer strips are often recommended. However, the mitigating influence with increasing buffer strip width could not be demonstrated for riparian buffers which were already present in the arable and vineyard region. This result was attributed in the vineyard region to the high number of paved field paths associated with artificial erosion rills, which concentrate and rapidly transport receiving edge-of-field runoff in stream direction. Consequently the pesticide reduction efficiency of buffer strips is considerably reduced. We assumed that a similar process occurred in the arable region, due to a high number of erosion rills, which complicate a laminar sheet flow of edge-of-field runoff through the riparian buffer strip. Additionally also the presence of ephemeral drainage ditches, which led surface runoff from the agricultural fields to the streams may have contributed to observed pesticide entries despite wide buffers.
Effective risk mitigation measures should address these identified most important input pathways in the study areas. As possible measures the implementation of grassed field paths and vegetated ditches or wetlands were suggested. In general also the improvement of currently present riparian buffer strips regarding their efficiency to reduce pesticide runoff entries should be taken into account. In conclusion the results of the field studies underline the importance that risk mitigation measures are identified specifically for the respective pollution situation in stream catchments. To facilitate this process, a user guide was developed within the present thesis for identifying appropriate mitigation measures at high-risk sites. Based on a survey of exposure relevant landscape parameter a set of risk mitigation measures is suggested that focus on the specific pollution situation. Currently the guide includes 12 landscape- and six application-related measures and presents an overview of these measures" efficiency to reduce pesticide entries via runoff and spray drift, their feasibility and expected acceptability to farmers. Based on this information the user can finally choose the mitigation measures for implementation. The present guide promotes the practical implementation of appropriate risk mitigation measures in pesticide-polluted streams, and thus the protection of aquatic stream communities against pesticide entries.
The estimation of the potential risk of pesticide entries into streams - and therefore the potential risk for the ecosystems - is an important requirement for the planning of risk mitigation strategies. Especially on the landscape level the required event triggered sampling methods are conjuncted with considerable efforts with regard to input data, time and personnel. To circumvent these problems simulation models form a reasonable alternative. The aims of this work were (A) the development of a simulation tool for the estimation of pesticide entries into surface waters on the landscape level, and (B) the application of the simulator for an exposure- and risk-assessment as well as the assessment of negative effects of pesticides on aquatic communities. Section 1 - Exposure-, Risk- and Effects In sections 1.1 and 1.2 the simulation model was applied to a multitude of small and medium sized streams in an agricultural impacted study area around the city of Braunschweig, Germany. Section 1.3 gives an overview of the simulators field of application and the general system structure. Section 1.1 - Scenario based simulation of runoff-related pesticide entries into small streams on a landscape level (English publication, p. 27): In this paper we present a simulation tool for the simulation of pesticide entry from arable land into adjacent streams. We used the ratio of exposure to toxicity (REXTOX) model proposed by the OECD which was extended to calculate pesticide concentrations in adjacent streams. We simulated the pesticide entry on the landscape level at 737 sites in small streams situated in the central lowland of Germany. The most significant model parameters were the width of the no-application-zone and the degree of plant-interception. The simulation was carried out using eight different environmental scenarios, covering variation of the width of the no-application-zone, climate and seasonal scenarios. The highest in-stream concentrations were predicted at a scenario using no (0 m) buffer zone in conjunction with increased precipitation. According to the predicted concentrations, the risk for the aquatic communities was estimated based on standard toxicity tests and the application of a safety factor. Section 1.2 - Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level (English publication, p. 50): In this study the average numbers of invertebrate species across an arable landscape in central Germany (surveys from 15 years in 90 streams at 202 sites) were assessed for their correlation with environmental factors such as stream width, land use (arable land, forest, pasture, settlement), soil type and agricultural derived stressors. The stress originating from arable land was estimated by the factor "risk of runoff", which was derived from a runoff-model (rainfall induced surface runoff). Multivariate analysis explained 39.9% of the variance in species number, revealing stream width as the most important factor (25.3%) followed by risk of runoff (9.7%). Section 1.3 - Informationssystem zur ökotoxikologischen Bewertung der Gewässergüte in Bezug auf Pflanzenschutzmitteleinträge aus der Landwirtschaft - Systemaufbau und Anwendungsmöglichkeiten (German publication, p. 61): Section 1.3 contains a short overview of the simulation tool, the field of application and some examples of use, covering the effects of the width of the buffer zone as well as the creation of risk maps on the landscape level. Section 2 - The simulation tool An important aspect for the employment of a simulation model in the context of risk assessment is the applicability in practice: the accessibility of the needed input data, the conversion of the mathematical model into a software application that can be run on any current personnel computer and also an appropriate end-user documentation of the system. Section 1.4 - Informationssystem zur ökotoxikologischen Bewertung der Gewässergüte in Bezug auf Pflanzenschutzmitteleinträge aus der Landwirtschaft - Simulationsmodell und Systemaufbau (German report, p. 67): In this section a general overview of the simulation model as well as the schematic system structure given. Section 1.5 - Benutzerhandbuch (German report, p. 71): The user manual contains details concerning the installation of the system, generation of the required input data and the general use of the system. Moreover it presents some application examples (what-if analyses). Section 1.6 - Technical documentation (German report, p. 104): The technical documentation describes internal structures and processes of the simulation system. Section 1.6 provides information regarding the required structure of input/output tables.