Refine
Year of publication
Document Type
- Doctoral Thesis (93)
- Article (2)
- Bachelor Thesis (1)
- Conference Proceedings (1)
- Habilitation (1)
- Part of Periodical (1)
Keywords
- Pflanzenschutzmittel (9)
- Pestizid (7)
- Landwirtschaft (5)
- ecotoxicology (4)
- Grundwasserfauna (3)
- Insektizid (3)
- Pesticides (3)
- agriculture (3)
- pesticide (3)
- pesticides (3)
Institute
- Fachbereich 7 (99) (remove)
Wild bees are essential for the pollination of wild and cultivated plants. However, within the
last decades, the increasing intensification of modern agriculture has led to both a reduction and fragmentation as well as a degradation of the habitats wild bees need. The resulting loss of pollinators and their pollination poses an immense challenge to global food production. To support wild bees, the availability of flowering resources is essential. However, the flowering period of each resource is temporally limited and has different effects on pollinators and their pollination, depending on the time of their flowering.
Therefore, to efficiently promote and manage wild bee pollinators in agricultural landscapes, we identified species-specific key floral resources of three selected wild bee species and their spatial and temporal availability (CHAPTERS 2, 3 & 4). We examined, which habitat types predominantly provide these resources (CHAPTERS 3 & 4). We also investigated whether floral resource maps based on the use of these key resources and their spatial and temporal availability explain the abundance and development of the selected wild bees (CHAPTERS 3 & 4) and pollination (CHAPTER 5) better than habitat maps, that only indirectly account for the availability of floral resources.
For each of the species studied, we were able to identify different key pollen sources, predominantly woody plants in the early season (April/May) and increasingly herbaceous plants in the later season (June/July; CHAPTERS 2, 3 & 4). The open woody semi-natural habitats of our agricultural landscapes provided about 75% of the floral resources for the buff-tailed bumblebees, 60% for the red mason bees, and 55% for the horned mason bees studied, although they accounted for only 3% of the area (CHAPTERS 3 & 4). In addition, fruit orchards provided about 35% of the floral resources for the horned mason bees on 4% of the landscape area (CHAPTER 3). We showed that both mason bee species benefited from the resource availability in the surrounding landscapes (CHAPTER 3). Yet this was not the case for the bumblebees (CHAPTER 4). Instead, the weight gain of their colonies, the number of developed queen cells and their colony survival were higher with increasing proximity to forests. The proximity to forests also had a positive effect on the mason bees studied (CHAPTER 3). In addition, the red mason bees benefited from herbaceous semi-natural habitats. The proportion of built-up areas had a negative effect on the horned mason bees, and the proportion of arable land on the red mason bees. The habitat maps explained horned mason bee abundances equally well as the floral resource maps, but red mason bee abundances were distinctly better explained by key floral resources. The pollination of field bean increased with higher proportions of early floral resources, whereas synchronous floral resources showed no measurable reduction in their pollination (CHAPTER 5). Habitat maps also explained field bean pollination better than floral resource maps. Here, pollination increased with increasing proportions of built-up areas in the landscapes and decreased with increasing proportions of arable land.
Our results highlight the importance of the spatio-temporal availability of certain key species as resource plants of wild bees in agricultural landscapes. They show that habitat maps are ahead of, or at least equal to, spatio-temporally resolved floral resource maps in predicting wild bee development and pollination. Nevertheless, floral resource maps allow us to draw more accurate conclusions between key floral resources and the organisms studied. The proximity to forest edges had a positive effect on each of the three wild bee species studied. However, besides pure food availability, other factors seem to co-determine the occurrence of wild bees in agricultural landscapes.
Vertebrate biodiversity is rapidly decreasing worldwide with amphibians being the most endangered vertebrate group. In the EU, 21 of 89 amphibian species are recognized as being endangered. The intensively used European agricultural landscape is one of the major causes for these declines. As agriculture represents an essential habitat for amphibians, exposure to pesticides can have adverse effects on amphibian populations. Currently, the European risk assessment of pesticides for vertebrates requires specific approaches for fish regarding aquatic vertebrate toxicity and birds as well as mammals for terrestrial vertebrate toxicity but does not address the unique characteristics of amphibians. Therefore, the overall goal of this thesis was to investigate the ecotoxicological effects of pesticides on Central European anuran amphibians. For this, effects on aquatic and terrestrial amphibian life stages as well as on reproduction were investigated. Then, in anticipation of a risk assessment of pesticides for amphibians, this thesis discussed potential regulatory risk assessment approaches.
For the investigated pesticides and amphibian species, it was observed that the acute aquatic toxicity of pesticides can be addressed using the existing aquatic risk assessment approach based on fish toxicity data. However, lethal as well as sublethal effects were observed in terrestrial juveniles after dermal exposure to environmentally realistic pesticide concentrations, which cannot be covered using an existing risk assessment approach. Therefore, pesticides should also be evaluated for potential terrestrial toxicity using risk assessment tools before approval. Additionally, effects of co-formulants and adjuvants of pesticides need specific consideration in a future risk assessment as they can increase toxicity of pesticides to aquatic and terrestrial amphibian stages. The chronic duration of combined aquatic and terrestrial exposure was shown to affect amphibian reproduction. Currently, such effects cannot be captured by the existing risk assessment as data involving field scenarios analysing effects of multiple pesticides on amphibian reproduction are too rare to allow comparison to data of other terrestrial vertebrates such as birds and mammals. In the light of these findings, future research should not only address acute and lethal effects, but also chronic and sublethal effects on a population level. As pesticide exposure can adversely affect amphibian populations, their application should be considered even more carefully to avoid further amphibian declines. Overall, this thesis emphasizes the urgent need for a protective pesticide risk assessment for amphibians to preserve and promote stable amphibian populations in agricultural landscapes.
The role of alternative resources for pollinators and aphid predators in agricultural landscapes
(2021)
The world wide decline of insects is often associated with loss of natural and semi-natural habitat caused by intensified land-use. Many insects provide important ecosystem services to agriculture, such as pest control or pollination. To efficiently promote insects on remaining semi-natural habitat we need precise knowledge of their requirements to non-crop habitat. This thesis focuses on identifying
the most important semi-natural habitats (forest edges, grasslands, and semi-open habitats) for pollinators and natural enemies of crop pests with respect to their food resource requirements. Special
attention is given to floral resources and their spatio-temporal distribution in agricultural landscapes.
Floral resource maps might get closer at characterizing landscapes the way they are experienced by insects compared to classical habitat maps. Performance of the two map types was compared on the prediction of wild bees and natural enemies that consume nectar and pollen, identifying habitats of special importance in the process. In wild bees, influences of spatio-temporal floral resource availability were analysed as well as habitat preferences of specific groups of bees. Understanding dietary needs of natural enemies of crop pests requires additional knowledge on prey use. To this end, ladybird gut contents have been analysed by means of high-throughput sequencing for insight into aphid prey-use.
Results showed, that wild bees were predicted better by floral resource maps compared to classical habitat maps. Forest edge area, as well as floral resources in forest edges had positive effects on abundance and diversity of rare bees and important crop pollinators. Similar patterns were retained for grassland diversity. Especially early floral resources seemed to have positive effects on wild bees. Crops and fruit trees produced a resource pulse in April that exceeded floral resource availability in May and June by tenfold. Most floral resources in forest edges appeared early in the season, with the highest floral density per area. Grasslands provided the lowest amount of floral resources but highest diversity, which was evenly distributed over the season.
Despite natural enemies need for floral resources, classical habitat maps performed better at predicting natural enemies of crop pests compared to floral resource maps. Classical habitat maps revealed a positive effect of forest edge habitat on the abundance of pest enemies, which translated into improved aphid control. Results from gut content analysis reveal high portions of pest aphid species and nettle aphids as well as a broader insight into prey spectra retained from ladybirds collected from sticky traps compared to individuals collected by hand. The aphid specific primer designed for this purpose will be helpful for identifying aphid consumption by ladybirds in future studies.
Findings of this thesis show the potential of floral resource maps for understanding interactions of wild bees and the landscape but also indicate that natural enemies are limited by other resources. I would like to highlight the positive effects of forest edges for different groups of bees as well as natural enemies and their performance on pest control.
Mathematical models of species dispersal and the resilience of metapopulations against habitat loss
(2021)
Habitat loss and fragmentation due to climate and land-use change are among the biggest threats to biodiversity, as the survival of species relies on suitable habitat area and the possibility to disperse between different patches of habitat. To predict and mitigate the effects of habitat loss, a better understanding of species dispersal is needed. Graph theory provides powerful tools to model metapopulations in changing landscapes with the help of habitat networks, where nodes represent habitat patches and links indicate the possible dispersal pathways between patches.
This thesis adapts tools from graph theory and optimisation to study species dispersal on habitat networks as well as the structure of habitat networks and the effects of habitat loss. In chapter 1, I will give an introduction to the thesis and the different topics presented in this thesis. Chapter 2 will then give a brief summary of tools used in the thesis.
In chapter 3, I present our model on possible range shifts for a generic species. Based on a graph-based dispersal model for a generic aquatic invertebrate with a terrestrial life stage, we developed an optimisation model that models dispersal directed to predefined habitat patches and yields a minimum time until these patches are colonised with respect to the given landscape structure and species dispersal capabilities. We created a time-expanded network based on the original habitat network and solved a mixed integer program to obtain the minimum colonisation time. The results provide maximum possible range shifts, and can be used to estimate how fast newly formed habitat patches can be colonised. Although being specific for this simulation model, the general idea of deriving a surrogate can in principle be adapted to other simulation models.
Next, in chapter 4, I present our model to evaluate the robustness of metapopulations. Based on a variety of habitat networks and different generic species characterised by their dispersal traits and habitat demands, we modeled the permanent loss of habitat patches and subsequent metapopulation dynamics. The results show that species with short dispersal ranges and high local-extinction risks are particularly vulnerable to the loss of habitat across all types of networks. On this basis, we then investigated how well different graph-theoretic metrics of habitat networks can serve as indicators of metapopulation robustness against habitat loss. We identified the clustering coefficient of a network as the only good proxy for metapopulation robustness across all types of species, networks, and habitat loss scenarios.
Finally, in chapter 5, I utilise the results obtained in chapter 4 to identify the areas in a network that should be improved in terms of restoration to maximise the metapopulation robustness under limited resources. More specifically, we exploit our findings that a network’s clustering coefficient is a good indicator for metapopulation robustness and develop two heuristics, a Greedy algorithm and a deducted Lazy Greedy algorithm, that aim at maximising the clustering coefficient of a network. Both algorithms can be applied to any network and are not specific to habitat networks only.
In chapter 6, I will summarize the main findings of this thesis, discuss their limitations and give an outlook of future research topics.
Overall this thesis develops frameworks to study the behaviour of habitat networks and introduces mathematical tools to ecology and thus narrows the gap between mathematics and ecology. While all models in this thesis were developed with a focus on aquatic invertebrates, they can easily be adapted to other metapopulations.
Rivers play an important role in the global water cycle, support biodiversity and ecological integrity. However, river flow and thermal regimes are heavily altered in dammed rivers. These impacts are being exacerbated and become more apparent in rivers fragmented by multiple dams. Recent studies mainly focused on evaluating the cumulative impact of cascade reservoirs on flow or thermal regimes, but the role of upstream reservoirs in shaping the hydrology and hydrodynamics of downstream reservoirs remains poorly understood. To improve the understanding of the hydrodynamics in cascade reservoirs, long-term observational data are used in combination with numerical modeling to investigate the changes in flow and thermal regime in three cascade reservoirs at the upper reach of the Yangtze River. The three studied reservoirs are Xiluodu (XLD), Xiangjiaba (XJB) and Three Gorges Reservoir (TGR). In addition, the effects of single reservoir operation (at seasonal/daily time scale) on hydrodynamics are examined in a large tributary of TGR. The results show that the inflow of TGR has been substantially altered by the two upstream reservoirs with a higher discharge in spring and winter and a reduced peak flow in summer. XJB had no obvious contribution to the variations in inflow of TGR. The seasonal water temperature of TGR was also widely affected by the upstream two reservoirs, i.e., an increase in winter and decrease in spring, associated with a delay in water temperature rise and fall. These effects will probably be intensified in the coming years due to the construction of new reservoirs. The study also underlines the importance of reservoir operation in shaping the hydrodynamics of TGR. The seasonal dynamics of density currents in a tributary bay of TGR are closely related to seasonal reservoir operations. In addition, high-frequency water level fluctuations and flow velocity variations were observed in response to periodic tributary bay oscillations, which are driven by the diurnal discharge variations caused by the operation of TGR. As another consequence of operation of cascade reservoirs, the changes in TGR inflow weakened spring thermal stratification and caused warming in spring, autumn and winter. In response to this change, the intrusions from TGR occurred more frequently as overflow and earlier in spring, which caused a sharp reduction in biomass and frequency of phytoplankton blooms in tributary bays of TGR. This study suggests that high-frequency bay oscillations can potentially be used as an efficient management strategy for controlling algal blooms, which can be included in future multi-objective ecological conservation strategies.
Although most plastic pollution originates on land, current research largely remains focused on aquatic ecosystems. Studies pioneering terrestrial microplastic research have adapted analytical methods from aquatic research without acknowledging the complex nature of soil. Meanwhile, novel methods have been developed and further refined. However, methodical inconsistencies still challenge a comprehensive understanding of microplastic occurrence and fate in and on soil. This review aims to disentangle the variety of state-of-the-art sample preparation techniques for heterogeneous solid matrices to identify and discuss best-practice methods for soil-focused microplastic analyses. We show that soil sampling, homogenization, and aggregate dispersion are often neglected or incompletely documented. Microplastic preconcentration is typically performed by separating inorganic soil constituents with high-density salt solutions. Not yet standardized but currently most used separation setups involve overflowing beakers to retrieve supernatant plastics, although closed-design separation funnels probably reduce the risk of contamination. Fenton reagent may be particularly useful to digest soil organic matter if suspected to interfere with subsequent microplastic quantification. A promising new approach is extraction of target polymers with organic solvents. However, insufficiently characterized soils still impede an informed decision on optimal sample preparation. Further research and method development thus requires thorough validation and quality control with well-characterized matrices to enable robust routine analyses for terrestrial microplastics.
Internationale Bildungsstudien (TIMSS und PISA) offenbarten, dass es deutschen Schülern nur begrenzt gelingt, ihr erworbenes Wissen im Physikunterricht zur Problemlösung in neuen Kontexten zu nutzen. Als Grund nennen die Studien die gering ausgeprägte Kompetenz-erwartung in Bezug zum Fach Physik. Die Folge ist eine geringe Motivation der Lernenden, physikalische Aufgaben zu lösen. Studien zeigen aber auch, dass die Motivation beim Lernen durch den Einsatz digitaler Lernmedien gesteigert werden konnte. Aus diesem Grund wird in dieser Arbeit untersucht, ob das Vertrauen in die eigenen Fähigkeiten durch das Lernen in einer integrierten Lernumgebung gefördert werden kann. Im Rahmen eines Design-Based-Research-Forschungsansatzes (DBR) wurde eine integrierte Lernumgebung „Wärmelehre“ mit digitalen Lernmedien für den Physikunterricht gestaltet, die dann in zwei Schulformen (IGS und Gymnasium) innerhalb einer quasi-experimentellen Feldstudie erprobt wurde. Im 1. Zyklus des DBR wurden die Wirkungen des selbstständigen Lernens mit digitalen/analogen Medien in Einzelarbeit untersucht. Die Ergebnisse der Wissenstests zeigen einen höheren Lernerfolg bei den Lernenden der Experimentalgruppen, der sich aber nicht signifikant von den Lernenden der Kontrollgruppen (analoge Medien) unterscheidet. Die Lernenden konnten sich in der integrierten Lernumgebung mit Unterstützung beider Medienformate selbstständig Fachwissen aneignen und problembasierte Textaufgaben lösen. Die Ergebnisse der Befragungen der Lernenden zeigen, dass sich die Lerngruppen signifikant in ihrem erlebten Grad der Selbststeuerung unterscheiden. Die Lernenden beider Experimentalgruppen bewerten ihren Handlungsspielraum besser als die Lernenden der beiden Kontrollgruppen. Ebenfalls konnte festgestellt werden, dass sich die individuellen Lernvoraussetzungen, der Lernstiltyp, das Kompetenzerleben und die Aspekte der Medien-gestaltung wechselseitig beeinflussen und auf den Lernerfolg wirken. Die Ergebnisse der Lernstilanalyse zeigen, dass sich selbst kleine Lerngruppen heterogen zusammensetzen. Demnach scheint es für einen guten Lernerfolg notwendig zu sein, dass die Lehrenden, die Lernumgebung an die individuellen Lernpräferenzen der Lernenden der Lerngruppe anpassen. Aus den Ergebnissen lässt sich als Konsequenz für den Physikunterricht ableiten, dass Selbstlernphasen mit digitalen Lernmedien regelmäßig in den Unterricht integriert werden sollten, um die Problemlöse- und die Selbststeuerungskompetenz zu fördern. Es ist von Vorteil, wenn die Lehrenden für die Gestaltung einer Lernumgebung, das Vorwissen, die individuellen Lernvoraussetzungen und die Zusammensetzung der Lerngruppe (Lernstiltyp) als Qualitätsdimensionen erfassen. Im Re-Design werden Vorschläge unterbreitet, wie die integrierte Lernumgebung lernstilgerecht weiterentwickelt werden kann. Im 2. Zyklus soll dann erforscht werden, ob sich Unterschiede im Lernerfolg und in den untersuchten Aspekten zeigen, wenn die Lernenden in Einzelarbeit, in Partnerarbeit oder in ihrer Lernstilgruppe selbstgesteuert lernen, um die Lernumgebung zyklisch weiterzuentwickeln.
This thesis examined two specific cases of point and diffuse pollution, pesticides and salinisation, which are two of the most concerning stressors of Germany’s freshwater bodies. The findings of this thesis were organized into three major components, of which the first component presents the contribution of WWTPs to pesticide toxicity (Chapter 2). The second component focuses on the current and future background salt ion concentrations under climate change with the absence of anthropogenic activities (Chapter 3). Finally, the third major component shows the response of invertebrate communities in terms of species turnover to levels of salinity change, considered as a proxy for human-driven salinisation (Chapter 4).
Eine zutreffende Diagnose über den aktuellen Kenntnisstand der jeweiligen Schülerinnen und Schüler ist notwendig, um adäquat in Gruppenarbeitsprozesse intervenieren zu können. Von diesem Zusammenhang wird in der Literatur weit-gehend ausgegangen, jedoch gibt es bisher kaum empirische Studien, die diesen belegen. Die vorliegende Arbeit widmet sich schwerpunktmäßig dem Interventi-onsverhalten von Studierenden. Dabei wird die prozessdiagnostische Fähigkeit „Deuten“ zugrundegelegt, um unterschiedliches Interventionsverhalten auf diese Fähigkeit zurückführen zu können. Sowohl beim Aufbau diagnostischer Fähig-keiten als auch bei der (Weiter-)Entwicklung des eigenen Lehrerhandelns gilt Reflexion als hilfreich. Entsprechend wird auch das Zusammenspiel von Pro-zessdiagnose und Reflexionsverhalten sowie von Interventionsverhalten und Reflexionsverhalten untersucht.
Für die Erhebung der prozessdiagnostischen Fähigkeit „Deuten“ wurden drei Videovignetten erstellt und in das Videodiagnosetool ViviAn eingebunden. Die Videovignetten zeigen jeweils vier Schülerinnen, die sich mit dem Thema „Ter-me“ beschäftigen. Im Rahmen eines Lehr-Lern-Labores wurden über vier Se-mester hinweg alle teilnehmenden Studierenden dazu angehalten, die Videovig-netten zu bearbeiten. Ebenso konzipierten sie jeweils zu dritt eine Laborstation im Mathematik-Labor „Mathe ist mehr“ und erprobten diese mit einer Schul-klasse. Dabei wurden die Interventionen der Studierenden in die Gruppenarbeits-prozesse der Schülerinnen und Schüler videographiert. Anschließend reflektierten die Studierenden in Kleingruppen über die Erprobungen und über die getätigten Interventionen. Die Reflexionsgespräche wurden ebenfalls videographiert.
Es zeigt sich, dass die Studierenden, die sich zum Zeitpunkt der Erhebung im Masterstudium befanden, noch Entwicklungsspielraum in Bezug auf ihre pro-zessdiagnostische Fähigkeit „Deuten“ besitzen. Im Hinblick auf die Interventio-nen waren responsive Interventionen häufiger angemessen als invasive Interven-tionen, wobei responsive Internvetionen auch vergleichsweise häufiger dazu führten, dass mehr Schülerinnen und Schüler nach der Intervention aktiv waren. Studierende mit höherer prozessdiagnostischer Fähigkeit „Deuten“ intervenierten jedoch häufiger invasiv und tätigten dabei trotzdem angemessenere und aktivie-rendere Interventionen als ihre Kommilitoninnen und Kommilitonen. Entspre-chend scheint sich die prozessdiagnostische Fähigkeit „Deuten“ positiv auf die Interventionen der Studierenden auszuwirken und sollte daher bereits im Rah-men des (Lehramts-)Studiums verstärkt geschult werden.
Abdriftbedingte Pflanzenschutzmittelrückstände in unbehandelten Kulturen auf angrenzenden Flächen
(2020)
Die vorliegende Arbeit beschäftigt sich mit der Abdrift von Pflanzenschutzmitteln (PSM), die auf Lebensmittelkulturen in angrenzenden Flächen, insbesondere in benachbarte Haus- und Kleingärten, gelangt. In einer Reihe von Windtunnelversuchen wurde die Abdrift von PSM aus Flächen- und Raumkulturen während der Applikation mit zwei verschiedenen Testsystemen nachgestellt. Das Testsystem Flächenkultur simuliert die Applikation auf Flächenkulturen, das Testsystem Raumkultur die auf Raumkulturen. Auf der Nicht-Zielfläche wurden die auf Grund von Abdrift entstandenen Rückstände des verwendeten Tracers Pyranin nach der Applikation entfernungsabhängig auf den Lebensmittelkulturen Kopfsalat, Erdbeeren und Tomaten gemessen. Durch die gleichzeitige Messung der Bodendeposition konnten die Messwerte mit Hilfe von Regressionsgleichungen (R² = 0,88 bis 0,97) in Bezug zu den Abdrifteckwerten (AEW) gebracht werden. Dadurch war es möglich, erste Abschätzungen der Höhe von Rückständen vorzunehmen, die über Abdrift von landwirtschaftlichen Flächen auf benachbarte Lebensmittelkulturen im Freiland gelangen können. Diese Abschätzung ist zunächst limitiert auf die drei Versuchspflanzen. Die Versuche zeigen, dass sich die meisten durch Abdrift entstehenden Rückstände auf Salatköpfen wieder finden, gefolgt von Erdbeeren und Tomaten.
Neben dem experimentellen Teil wurden Analysen mit Geoinformationssystemen (GIS) durchgeführt, um die Nachbarschaftsverhältnisse zwischen landwirtschaftlich genutzten Flächen und Gartenflächen für ganz Deutschland und speziell für Rheinland-Pfalz (RLP) zu analysieren. Dazu wurden für die deutschlandweiten Berechnungen die Daten des amtlichen topographisch-kartographischen Informationssystems (ATKIS) und für die RLP-weiten Berechnungen die Daten des amtlichen Liegenschaftskatasterinformationssystem (ALKIS) verwendet. Beachtet werden muss, dass auf Grund der Datenbeschaffenheit eine Abgrenzung der Gartenflächen zu Wohnflächen nicht möglich ist. Deutschlandweit liegen etwa 1,1 % aller potentiellen Gartenflächen innerhalb eines 5 m Pufferbereichs um Raumkulturen bzw. innerhalb eines 2 m Pufferbereichs um Flächenkulturen. Für RLP sind es 0,75 %. Mit Hilfe eines Landbedeckungsdatensatzes der Fa. RLP AgroScience GmbH und den ALKIS-Daten konnte jedoch die exakte Gartenfläche für RLP auf 47.437 ha bestimmt werden. Basierend auf dieser Datengrundlage liegen 1,2 % der Gartenfläche von RLP innerhalb der genannten Pufferbereiche. Des Weiteren ergaben Berechnungen, dass 3 % der Gärten in RLP direkt angrenzend zu landwirtschaftlich genutzten Flächen liegen.
Im Rahmen dieser Arbeit wurden nicht nur Gärten betrachtet, die an landwirtschaftliche Flächen grenzen, sondern auch Nachbarschaftsverhältnisse zwischen ökologisch und konventionell bewirtschafteten Flächen untersucht. Diese Berechnungen erfolgten mit den Daten des Integrierten Verwaltungs- und Kontrollsystems (InVeKoS). Insgesamt grenzen in RLP 47,1 % aller ökologisch bewirtschafteten Flächen unmittelbar an konventionell bewirtschaftete Flächen an.
The increase in plastic particles (< 5 mm) in the environment is a global problem, which is in direct correlation to the increasing production quantity and variety. Through direct input (primary) or through the degradation of macroplastics (secondary), particles enter the environmental compartments water and/or soil via conventional material transportation paths. The research and development work on the sustainable removal of microplastic particles (inert organic chemical stressors, IOCS) from wastewater is based on the construction of polymer inclusion compounds. IOCS describe a group of organic chemical molecules, which demonstrate a high level of persistence upon entry in the ecosystem and whose degradation is limited.
Following the principle of Cloud Point Technology, a novel separation technique has been developed which induces particle growth in microplastics and allows easier separation from the water by volume increase according to the state of the art. The concept for the sustainable removal of microplastics from Herbort and Schuhen is based on a three-step synthesis. This concept was further optimized as part of the research and adapted to the criteria of resource efficiency and profitability. The fundamental research is premised on the hypothesis that van der Waals forces with short ranges and localized hydrophobic interactions between precursors and/or material and the IOCS to be connected can induce a fixation through the formation of an inclusion compound with particle growth. Through the addition of silicon-based ecotoxicologically irrelevant coagulation and inclusion units, it is possible to initiate molecular self-organization with the hydrophobic stressors in an aggregation process induced through water. It results in adhesive particle growth around the polymer particles and between particles. Subsequently, the polymer extract can be separated from aquatic media through simple and cost-effective filtration processes (e.g. sand trap, grease trap), due to the 10,000 times larger volume microplastic agglomerates.
The European landscape is dominated by intensive agriculture which leads to widespread impact on the environment. The frequent use of agricultural pesticides is one of the major causes of an ongoing decline in flower-visiting insects (FVIs). The conservation of this ecologically diverse assemblage of mobile, flying insect species is required by international and European policy. To counteract the decrease in species numbers and their abundances, FVIs need to be protected from anthropogenic stressors. European pesticide risk assessment was devised to prevent unacceptable adverse consequences of pesticide use on FVIs. However, there is an ongoing discussion by scientists and policy-makers if the current risk assessment actually provides adequate protection for FVI species.
The first main objective of this thesis was to investigate pesticide impact on FVI species. The scientific literature was reviewed to identify groups of FVIs, summarize their ecology, and determine their habitat. This was followed by a synthesis of studies about the exposure of FVIs in their habitat and subsequent effects. In addition, the acute sensitivity of one FVI group, bee species, to pesticides was studied in laboratory experiments.
The second main objective was to evaluate the European risk assessment for possible deficits and propose improvements to the current framework. Regulatory documents were screened to assess the adequacy of the guidance in place in light of the scientific evidence. The suitability of the honey bee Apis mellifera as the currently only regulatory surrogate species for FVIs was discussed in detail.
The available scientific data show that there are far more groups of FVIs than the usually mentioned bees and butterflies. FVIs include many groups of ecologically different species that live in the entire agricultural landscape. Their habitats in crops and adjacent semi-natural areas can be contaminated by pesticides through multiple pathways. Environmentally realistic exposure of these habitats can lead to severe effects on FVI population parameters. The laboratory studies of acute sensitivity in bee species showed that pesticide effects on FVIs can vary greatly between species and pesticides.
The follow-up critical evaluation of the European FVI risk assessment revealed major shortcomings in exposure and effect assessment. The honey bee proved to be a sufficient surrogate for bee species in lower tier risk assessment. Additional test species may be chosen for higher tier risk assessment to account for ecological differences. This thesis shows that the ecology of FVIs should generally be considered to a greater extent to improve the regulatory process. Data-driven computational approaches could be used as alternative methods to incorporate ecological trait data in spatio-temporal scenarios. Many open questions need to be answered by further research to better understand FVI species and promote necessary changes to risk assessment. In general, other FVI groups than bees need to be investigated. Furthermore, comprehensive data on FVI groups and their ecology need to be collected. Contamination of FVI habitat needs to be linked to exposure of FVI individuals and ecologically complex effects on FVI populations should receive increased attention. In the long term, European FVI risk assessment would benefit from shifting its general principles towards more scientifically informed regulatory decisions. This would require a paradigm shift from arbitrary assumptions and unnecessarily complicated schemes to a substantiated holistic framework.
Environmental processes transforming inorganic nanoparticles: implications on aquatic invertebrates
(2020)
Engineered inorganic nanoparticles (EINPs) are produced and utilized on a large scale and will end up in surface waters. Once in surface waters, EINPs are subjected to transformations induced by environmental processes altering the particles’ fate and inherent toxicity. UV irradiation of photoactive EINPs is defined as one effect-inducing pathway, leading to the formation of reactive oxygen species (ROS), increasing EINP toxicity by exerting oxidative stress in aquatic life. Simultaneously, UV irradiation of photoactive EINP alters the toxicity of co-occurring micropollutants (e.g. pesticides) by affecting their degradation. The presence of natural organic matter (NOM) reduces the agglomeration and sedimentation of EINPs, extending the exposure of pelagic species, while delaying the exposure of benthic species living in and on the sediment, which is suggested as final sink for EINPs. However, the joint impact of NOM and UV irradiation on EINP-induced toxicity, but also EINP-induced degradation of micropollutants, and the resulting risk for aquatic biota, is poorly understood. Although potential effects of EINPs on benthic species are increasingly investigated, the importance of exposure pathways (waterborne or dietary) is unclear, along with the reciprocal pathway of EINPs, i.e. the transport back from aquatic to terrestrial ecosystems. Therefore, this thesis investigates: (i) how the presence of NOM affects the UV-induced toxicity of the model EINP titanium dioxide (nTiO2) on the pelagic organism Daphnia magna, (ii) to which extent UV irradiation of nTiO2 in the presence and absence of NOM modifies the toxicity of six selected pesticides in D. magna, (iii) potential exposure pathway dependent effects of nTiO2 and silver (nAg) EINPs on the benthic organism Gammarus fossarum, and (iv) the transport of nTiO2 and gold EINPs (nAu) via the merolimnic aquatic insect Chaetopteryx villosa back to terrestrial ecosystems. nTiO2 toxicity in D. magna increased up to 280-fold in the presence of UV light, and was mitigated by NOM up to 12-fold. Depending on the pesticide, UV irradiation of nTiO2 reduced but also enhanced pesticide toxicity, by (i) more efficient pesticide degradation, and presumably (ii) formation of toxic by-products, respectively. Likewise, NOM reduced and increased pesticide toxicity, induced by (i) protection of D. magna against locally acting ROS, and (ii) mitigation of pesticide degradation, respectively. Gammarus’ energy assimilation was significantly affected by both EINPs, however, with distinct variation in direction and pathway dependence between nTiO2 and nAg. EINP presence delayed C. villosa emergence by up to 30 days, and revealed up to 40% reduced lipid reserves, while the organisms carried substantial amounts of nAu (~1.5 ng/mg), and nTiO2 (up to 2.7 ng/mg). This thesis shows, that moving test conditions of EINPs towards a more field-relevant approach, meaningfully modifies the risk of EINPs for aquatic organisms. Thereby, more efforts need to be made to understand the relative importance of EINP exposure pathways, especially since a transferability between different types of EINPs may not be given. When considering typically applied risk assessment factors, adverse effects on aquatic systems might already be expected at currently predicted environmental EINP concentrations in the low ng-µg/L range.
Gel effect induced by mucilage in the pore space and consequences on soil physical properties
(2020)
Water uptake, respiration and exudation are some of the biological functions fulfilled by plant roots. They drive plant growth and alter the biogeochemical parameters of soil in the vicinity of roots, the rhizosphere. As a result, soil processes such as water fluxes, carbon and nitrogen exchanges or microbial activity are enhanced in the rhizosphere in comparison to the bulk soil. In particularly, the exudation of mucilage as a gel-like substance by plant roots seems to be a strategy for plants to overcome drought stress by increasing soil water content and soil unsaturated hydraulic conductivity at negative water potentials. Although the variations of soil properties due to mucilage are increasingly understood, a comprehensive understanding of the mechanisms in the pore space leading to such variations is lacking.
The aim of this work was to elucidate the gel properties of mucilage in the pore space, i.e. interparticulate mucilage, in order to link changes of the physico-chemical properties in the rhizosphere to mucilage. The fulfilment of this goal was confronted to the three following challenges: The lack of methods for in situ detection of mucilage in soil; The lack of knowledge concerning the properties of interparticulate mucilage; The unknown relationship between the composition and the properties of model substances and root mucilage produced by various species. These challenges are addressed in several chapters.
In a first instance, a literature review picked information from various scientific fields about methods enabling the characterization of gels and gel phases in soil. The variation of soil properties resulting from biohydrogel swelling in soil was named the gel effect. The combined study of water entrapment of gels and gel phases in soil and soil structural properties in terms of mechanical stability or visual structures proved promising to disentangle the gel effect in soil.
The acquired methodical knowledge was used in the next experiments to detect and characterize the properties of interparticulate gel. 1H NMR relaxometry allows the non-invasive measure of water mobility in porous media. A conceptual model based on the equations describing the relaxation of water protons in porous media was developed to integrate the several gel effects into the NMR parameters and quantify the influence of mucilage on proton relaxation. Rheometry was additionally used to assess mucilage viscosity and soil microstructural stability and ESEM images to visualize the network of interparticulate gel. Combination of the results enabled to identify three main interparticulate gel properties: The spider-web effect restricts the elongation of the polymer chains due to the grip of the polymer network to the surface of soil particles. The polymer network effect illustrates the organization of the polymer network in the pore space according to the environment. The microviscosity effect describes the increased viscosity of interparticulate gel in contrast to free gel. The impact of these properties on soil water mobility and microstructural stability were investigated. Consequences on soil hydraulic and soil mechanical properties found in the literature are further discussed.
The influence of the chemical properties of polymers on gel formation mechanism and gel properties was also investigated. For this, model substances with various uronic acid content, degree of esterification and amount of calcium were tested and their amount of high molecular weight substances was measured. The substances investigated included pectic polysaccharides and chia seed mucilage as model polymers and wheat and maize root mucilage. Polygalacturonic acid and low-methoxy pectin proved as non-suitable model polymers for seed and root mucilage as ionic interactions with calcium control their properties. Mucilage properties rather seem to be governed by weak electrostatic interactions between the entangled polymer chains. The amount of high molecular weight material varies considerably depending on mucilage´s origin and seems to be a straight factor for mucilage’s gel effect in soil. Additionally to the chemical characterization of the high molecular weight compounds, determination of their molecular weight and of their conformation in several mucilages types is needed to draw composition-property profiles. The variations measured between the various mucilages also highlight the necessity to study how the specific properties of the various mucilages fulfill the needs of the plant from which they are exuded.
Finally, the integration of molecular interactions in gel and interparticulate gel properties to explain the physical properties of the rhizosphere was discussed. This approach offers numerous perspectives to clarify for example how water content or hydraulic conductivity in the rhizosphere vary according to the properties of the exuded mucilage. The hypothesis that the gel effect is general for all soil-born exudates showing gel properties was considered. As a result, a classification of soil-born gel phases including roots, seeds, bacteria, hyphae and earthworm’s exuded gel-like material according to their common gel physico-chemical properties is recommended for future research. An outcome could be that the physico-chemical properties of such gels are linked with the extent of the gel effect, with their impact on soil properties and with the functions of the gels in soil.
The bio-insecticide Bacillus thuringiensis israelensis (Bti) has worldwide become the most commonly used agentin mosquito control programs that pursue two main objectives: the control of vector-borne diseases and the reduction of nuisance, mainly coming frommosquitoes that emerge in large quantities from seasonal wetlands. The Upper Rhine Valley, a biodiversity hotspot in Germany, has been treated withBti for decades to reduce mosquito-borne nuisance and increase human well-being.Although Btiis presumed to be an environmentally safe agent,adverse effects on wetland ecosystems are still a matter of debate especially when it comes to long-term and indirect effects on non-target organisms. In light of the above, this thesis aims at investigating direct and indirect effects of Bti-based mosquito control on non-target organisms within wetland food chains.Effects were examinedin studies with increasingeco(toxico)logical complexity, ranging from laboratory over mesocosm to field approaches with a focus on the non-biting Chironomidae and amphibian larvae (Rana temporaria, Lissotriton sp.).In addition, public acceptance of environmentally less invasive alternative mosquito control methods was evaluated within surveys among the local population.
Chironomids were the most severely affected non-target aquatic invertebrates. Bti substantially reduced larval and adult chironomid abundances and modified their species composition. Repeated exposures to commonly used Bti formulations induced sublethal alterations of enzymatic biomarkers activityin frog tadpoles. Bti-induced reductions of chironomid prey availability indirectly decreased body size of newts at metamorphosis and increased predation on newt larvae in mesocosm experiments. Indirect effects of severe reductions in midge biomassmight equally be passed through aquatic but also terrestrial food chains influencing predators of higher trophic levels. The majority ofaffectedpeople in the Upper Rhine Valley expressed a high willingness to contributefinancially to environmentally less harmful mosquito control.Alternative approaches could still include Bti applications excepting treatment of ecologically valuable areas. Potentially rising mosquito levels could be counteracted with local acting mosquito traps in domestic and urban areas because mosquito presence was experienced as most annoying in the home environment.
As Bti-based mosquito control can adversely affect wetland ecosystems, its large-scale applications, including nature conservation areas, should be considered more carefully to avoid harmful consequences for the environmentat the Upper Rhine Valley.This thesis emphasizesthe importance to reconsiderthe current practice of mosquito control and encourage research on alternative mosquito control concepts that are endorsed by the local population. In the context ofthe ongoing amphibian and insect declinesfurther human-induced effects onwetlands should be avoided to preserve biodiversity in functioning ecosystems.
Die Nachhaltigkeitsberichterstattung kann als ein zentrales Element einer konsequenten Unternehmensstrategie zur Umsetzung der gesellschaftlichen Verantwortung (Corporate Social Responsibility) angesehen werden. Um die Unternehmen bei dieser Aufgabe zu unterstützen stellt die Global Reporting Initiative (GRI) mit ihren G4 Leitlinien einen Orientierungsrahmen bereit, dessen Anwendung sich allerdings für Klein und Mittelunternehmen sehr komplex gestaltet. Ein branchenspezifisches Sector Supplement für den Weinbau existiert derzeit noch nicht.
Ziel der vorliegenden Arbeit ist es, diese Forschungslücke durch die Entwicklung weinbauspezifischer Nachhaltigkeitsaspekte und Indikatoren zu schließen, um den Betrieben eine selbstständige GRI-konforme Berichterstattung zu ermöglichen.
Der Prozess zur Identifikation wesentlicher Nachhaltigkeitsaspekte und -indikatoren erfolgt mittels Erhebungs- und Auswertungsmethoden der qualitativen Sozialforschung in Form
von Workshops, betrieblichen Vorortanalysen und Experteninterviews.
Parallel dazu erfolgt eine umfassende Analyse der weinbaulichen Wertschöpfungskette in Form einer Internet- und Literaturrecherche. Diese umfasst vorrangig die ökologischen Nachhaltigkeitsaspekte als diejenigen Bestandteile weinbaulicher Tätigkeiten, die sich sowohl positiv als auch negativ auf die Umwelt auswirken können. Anschließend erfolgt die zentrale Priorisierung der identifizieren Handlungsfelder und Nachhaltigkeitsthemen durch die Stakeholder. Zur Visualisierung der bewerteten Handlungsfelder dient das Instrument der Wesentlichkeitsanalyse.
Auf dieser Basis erfolgt die Entwicklung eines Handlungsleitfadens zur Erstellung von Nachhaltigkeitsberichten in der Weinwirtschaft. Hiermit erlangen Weingüter die praktische Kompetenz ein eigenes Nachhaltigkeitsreporting anzugehen.
Im Rahmen der Arbeit wurde auch ein elektronisches Tool entwickelt, das den Betrieben die Möglichkeit eröffnet, betriebliche Umweltaspekte zu erfassen und zu bewerten. Gleichzeitig wird den Anwendern damit die Generierung eines überbetrieblichen Vergleichs der Umweltleistung ermöglicht (Benchmarking).
Eine weitere Forschungsfrage der vorliegenden Arbeit beschäftigt sich mit der Biodiversitätserfassung und -bewertung für Rebland. Hintergrund sind die bisher nur geringen Funde auf der durch das Bundesamt für Naturschutz festgelegten Kennartenlisten bzw. den HNV-Stichprobenflächen (High nature value farmland-Indikator) für Rebland.
Hierzu wurde mittels Geoinformationssystemen das Artenvorkommen in rheinland-pfälzischen Weinanbaugebieten analysiert und 30 Pflanzenarten als Indikatorarten für den Weinbau abgeleitet. Ergänzend wurden weinbergstypische, geschützte Tierarten als „Bonusarten“ identifiziert. Die Indikatorarten werden den Winzern als ein Instrument zur eigenständigen Erfassung der Biodiversität in den Weinbergen dienen und im Rahmen einer Nachhaltigkeitsberichterstattung herangezogen werden können.
Groundwater is essential for the provision of drinking water in many areas around the world. The ecosystem services provided by groundwater-related organisms are crucial for the quality of groundwater-bearing aquifers. Therefore, if remediation of contaminated groundwater is necessary, the remediation method has to be carefully selected to avoid risk-risk trade-offs that might impact these valuable ecosystems. In the present thesis, the ecotoxicity of the in situ remediation agent Carbo-Iron (a composite of zero valent nano-iron and active carbon) was investigated, an estimation of its environmental risk was performed, and the risk and benefit of a groundwater remediation with Carbo-Iron were comprehensively analysed.
At the beginning of the work on the present thesis, a sound assessment of the environmental risks of nanomaterials was impeded by a lack of guidance documents, resulting in many uncertainties on selection of suitable test methods and a low comparability of test results from different studies with similar nanomaterials. The reasons for the low comparability were based on methodological aspects of the testing procedures before and during the toxicity testing. Therefore, decision trees were developed as a tool to systematically decide on ecotoxicity test procedures for nanomaterials. Potential effects of Carbo-Iron on embryonic, juvenile and adult life stages of zebrafish (Danio rerio) and the amphipod Hyalella azteca were investigated in acute and chronic tests. These tests were based on existing OECD and EPA test guidelines (OECD, 1992a, 2013a, 2013b; US EPA, 2000) to facilitate the use of the obtained effect data in the risk assessment. Additionally, the uptake of particles into the test organisms was investigated using microscopic methods. In zebrafish embryos, effects of Carbo-Iron on gene expression were investigated. The obtained ecotoxicity data were complemented by studies with the waterflea Daphnia magna, the algae Scenedesmus vacuolatus, larvae of the insect species Chironomus riparius and nitrifying soil microorganisms.
In the fish embryo test, no passage of Carbo-Iron particles into the perivitelline space or the embryo was observed. In D. rerio and H. azteca, Carbo-Iron was detected in the gut at the end of exposure, but no passage into the surrounding tissue was detected. Carbo-Iron had no significant effect on soil microorganisms and on survival and growth of fish. However, it had significant effects on the growth, feeding rate and reproduction of H. azteca and on survival and reproduction in D. magna. Additionally, the development rate of C. riparius and the cell volume of S. vacuolatus were negatively influenced.
A predicted no effect concentration of 0.1 mg/L was derived from the ecotoxicity studies based on the no-effect level determined in the reproduction test with D. magna and an assessment factor of 10. It was compared to measured and modelled environmental concentrations for Carbo-Iron after application to an aquifer contaminated with chlorohydrocarbons in a field study. Based on these concentrations, risk quotients were derived. Additionally, the overall environmental risk before and after Carbo-Iron application was assessed to verify whether the chances for a risk-risk trade-off by the remediation of the contaminated site could be minimized. With the data used in the present study, a reduced environmental risk was identified after the application of Carbo-Iron. Thus, the benefit of remediation with Carbo-Iron outweighs potential negative effects on the environment.
Sediment transport contributes to the movement of inorganic and organic material in rivers. The construction of a dam interrupts the continuity of this sediment transport through rivers, causing sediments to accumulate within the reservoir. Reservoirs can also act as carbon sinks and methane can be released when organic matter in the sediment is degraded under anoxic conditions. Reservoir sedimentation poses a great threat to the sustainability of reservoirs worldwide, and can emit the potent greenhouse gas methane into the atmosphere. Sediment management measures to rehabilitate silted reservoirs are required to achieve both better water quantity and quality, as well as to mitigate greenhouse gas emissions.
This thesis aims at the improvement of sediment sampling techniques to characterize sediment deposits as a basis for accurate and efficient water jet dredging and to monitor the dredging efficiency by measuring the sediment concentration. To achieve this, we investigated freeze coring as a method to sample (gas-bearing) sediment in situ. The freeze cores from three reservoirs obtained were scanned using a non-destructive X-Ray CT scan technique. This allows the determination of sediment stratification and character-ization of gas bubbles to quantify methane emissions and serve as a basis for the identi-fication of specific (i.e. contaminated) sediment layers to be dredged. The results demon-strate the capability of freeze coring as a method for the characterization of (gas-bearing) sediment and overcomes certain limitations of commonly used gravity cores. Even though the core’s structure showed coring disturbances related to the freezing process, the general core integrity seems to not have been disturbed. For dredging purposes, we analyzed the impact pressure distribution and spray pattern of submerged cavitating wa-ter jets and determined the effects of impinging distances and angles, pump pressures and spray angles. We used an adapted Pressure Measurement Sensing technique to enhance the spatial distribution, which proved to be a comparatively easy-to-use meas-urement method for an improved understanding of the governing factors on the erosional capacity of cavitating water jets. Based on this data, the multiple linear regression model can be used to predict the impact pressure distribution of those water jets to achieve higher dredging accuracy and efficiency. To determine the dredging operational efficien-cy, we developed a semi-continuous automated measurement device to measure the sediment concentration of the slurry. This simple and robust device has lower costs, compared to traditional and surrogate sediment concentration measurement technolo-gies, and can be monitored and controlled remotely under a wide range of concentrations and grain-sizes, unaffected by entrained gas bubbles
Carabids, which are frequently distributed in agricultural landscapes, are natural enemies of different pests including slugs. Semi-natural habitats are known to affect carabids and thus, their potential to support natural pest control.
The impact of semi-natural habitats was investigated on carabids and slugs within different non-crop habitats (chapter 2). Most carabids and Deroceras reticulatum showed preferences for herbaceous semi-natural habitats, while Arion spp. occured mainly in woody habitats. An increase of predatory carabid abundance, which was linked to an inclining amount of semi-natural habitats in the landscape, and a decrease of Arion spp. densities, indicated a high potential for slug control in structural rich landscapes.
Effects of semi-natural habitats were investigated on predatory carabids and slugs in 18 wheat fields (chapter 3). Predatory carabid species richness was positively affected by the increasing amount of semi-natural habitats in the landscape, whereas predatory carabid abundance was neither influenced by adjacent habitat type nor by the proportion of semi-natural habitats in the landscape. The target pest species showed divergent patterns, whereas Arion spp. densities were highest in structural poor landscapes near woody margins. D. reticulatum was not affected by habitat type or landscape, reflecting its adaptation to agriculture. Results indicate an increased control of Arion spp. by carabids in landscapes with a high amount of semi-natural habitats.
Effects of semi-natural habitats and the influence of farming system was tested on carabid distribution within 18 pumpkin fields (chapter 4). Carabid species richness generally increased with decreasing distance to the field margins, whereas carabid abundance responded differently according to the adjacent habitat type. Farming system had no effect on carabids and landscape heterogeneity only affected carabids in organic pumpkin fields.
Slug and slug egg predation of three common carabid species was tested in single and double species treatments in the laboratory (chapter 5). Results show additive and synergistic effects depending on the carabid species. In general, semi-natural habitats can enhance the potential of slug control by carabids. This counts especially for Arionid slugs. Semi-natural habitats can support carabid communities by providing shelter, oviposition and overwintering sites as wells as complementary food sources. Therefore, it is important to provide a certain amount of non-crop habitats in agricultural landscapes.
Grapevine growers have struggled with defending their crops against pests and diseases since the domestication of grapevine over 6000 ears ago. Since then, new growing methods paired with a better nderstanding of the ecological processes in the vineyard ecosystem continue to improve quality and quantity of grape harvests. In this thesis I am describing the effects of two recent innovations in viticulture on pest and beneficial arthropods in vineyards; Fungus-resistant grapevine cultivars (PIWIs) and the pruning system semi-minimal pruned hedge (SMPH). The SMPH pruning system allows for a drastic reduction of manual labor in the vineyard, and PIWIs are resistant to two of the most common fungal diseases of grapevine and therefore allow a drastic reduction of fungicide applications compared to conventional varieties. Heavy use of pesticides is linked to a number of problems, including pollution of waterways, negative effects on human health, and biodiversity loss. Here, I studied the effects of fungicide reduction and minimal pruning on arthropods that are beneficial for natural pest suppression in the vineyard ecosystem such as predatory mites, spiders, ants, earwigs, and lacewings. All of these groups either benefitted from the reduction of fungicide sprayings or were not significantly affected. Structural changes in the canopy of SMPH grapevines altered the microclimate in the canopy which in turn influenced some of the arthropods living in it. Overall, my findings suggest that PIWIs and SMPH, both in combination or separately, improve conditions for natural pest control. This adds to other advantages of these innovative management practices such as a reduction in production cost and a smaller impact on the environment.