Refine
Year of publication
Document Type
- Doctoral Thesis (93)
- Article (2)
- Bachelor Thesis (1)
- Conference Proceedings (1)
- Habilitation (1)
- Part of Periodical (1)
Keywords
- Pflanzenschutzmittel (9)
- Pestizid (7)
- Landwirtschaft (5)
- ecotoxicology (4)
- Grundwasserfauna (3)
- Insektizid (3)
- Pesticides (3)
- agriculture (3)
- pesticide (3)
- pesticides (3)
Institute
- Fachbereich 7 (99) (remove)
Wild bees are essential for the pollination of wild and cultivated plants. However, within the
last decades, the increasing intensification of modern agriculture has led to both a reduction and fragmentation as well as a degradation of the habitats wild bees need. The resulting loss of pollinators and their pollination poses an immense challenge to global food production. To support wild bees, the availability of flowering resources is essential. However, the flowering period of each resource is temporally limited and has different effects on pollinators and their pollination, depending on the time of their flowering.
Therefore, to efficiently promote and manage wild bee pollinators in agricultural landscapes, we identified species-specific key floral resources of three selected wild bee species and their spatial and temporal availability (CHAPTERS 2, 3 & 4). We examined, which habitat types predominantly provide these resources (CHAPTERS 3 & 4). We also investigated whether floral resource maps based on the use of these key resources and their spatial and temporal availability explain the abundance and development of the selected wild bees (CHAPTERS 3 & 4) and pollination (CHAPTER 5) better than habitat maps, that only indirectly account for the availability of floral resources.
For each of the species studied, we were able to identify different key pollen sources, predominantly woody plants in the early season (April/May) and increasingly herbaceous plants in the later season (June/July; CHAPTERS 2, 3 & 4). The open woody semi-natural habitats of our agricultural landscapes provided about 75% of the floral resources for the buff-tailed bumblebees, 60% for the red mason bees, and 55% for the horned mason bees studied, although they accounted for only 3% of the area (CHAPTERS 3 & 4). In addition, fruit orchards provided about 35% of the floral resources for the horned mason bees on 4% of the landscape area (CHAPTER 3). We showed that both mason bee species benefited from the resource availability in the surrounding landscapes (CHAPTER 3). Yet this was not the case for the bumblebees (CHAPTER 4). Instead, the weight gain of their colonies, the number of developed queen cells and their colony survival were higher with increasing proximity to forests. The proximity to forests also had a positive effect on the mason bees studied (CHAPTER 3). In addition, the red mason bees benefited from herbaceous semi-natural habitats. The proportion of built-up areas had a negative effect on the horned mason bees, and the proportion of arable land on the red mason bees. The habitat maps explained horned mason bee abundances equally well as the floral resource maps, but red mason bee abundances were distinctly better explained by key floral resources. The pollination of field bean increased with higher proportions of early floral resources, whereas synchronous floral resources showed no measurable reduction in their pollination (CHAPTER 5). Habitat maps also explained field bean pollination better than floral resource maps. Here, pollination increased with increasing proportions of built-up areas in the landscapes and decreased with increasing proportions of arable land.
Our results highlight the importance of the spatio-temporal availability of certain key species as resource plants of wild bees in agricultural landscapes. They show that habitat maps are ahead of, or at least equal to, spatio-temporally resolved floral resource maps in predicting wild bee development and pollination. Nevertheless, floral resource maps allow us to draw more accurate conclusions between key floral resources and the organisms studied. The proximity to forest edges had a positive effect on each of the three wild bee species studied. However, besides pure food availability, other factors seem to co-determine the occurrence of wild bees in agricultural landscapes.
Vertebrate biodiversity is rapidly decreasing worldwide with amphibians being the most endangered vertebrate group. In the EU, 21 of 89 amphibian species are recognized as being endangered. The intensively used European agricultural landscape is one of the major causes for these declines. As agriculture represents an essential habitat for amphibians, exposure to pesticides can have adverse effects on amphibian populations. Currently, the European risk assessment of pesticides for vertebrates requires specific approaches for fish regarding aquatic vertebrate toxicity and birds as well as mammals for terrestrial vertebrate toxicity but does not address the unique characteristics of amphibians. Therefore, the overall goal of this thesis was to investigate the ecotoxicological effects of pesticides on Central European anuran amphibians. For this, effects on aquatic and terrestrial amphibian life stages as well as on reproduction were investigated. Then, in anticipation of a risk assessment of pesticides for amphibians, this thesis discussed potential regulatory risk assessment approaches.
For the investigated pesticides and amphibian species, it was observed that the acute aquatic toxicity of pesticides can be addressed using the existing aquatic risk assessment approach based on fish toxicity data. However, lethal as well as sublethal effects were observed in terrestrial juveniles after dermal exposure to environmentally realistic pesticide concentrations, which cannot be covered using an existing risk assessment approach. Therefore, pesticides should also be evaluated for potential terrestrial toxicity using risk assessment tools before approval. Additionally, effects of co-formulants and adjuvants of pesticides need specific consideration in a future risk assessment as they can increase toxicity of pesticides to aquatic and terrestrial amphibian stages. The chronic duration of combined aquatic and terrestrial exposure was shown to affect amphibian reproduction. Currently, such effects cannot be captured by the existing risk assessment as data involving field scenarios analysing effects of multiple pesticides on amphibian reproduction are too rare to allow comparison to data of other terrestrial vertebrates such as birds and mammals. In the light of these findings, future research should not only address acute and lethal effects, but also chronic and sublethal effects on a population level. As pesticide exposure can adversely affect amphibian populations, their application should be considered even more carefully to avoid further amphibian declines. Overall, this thesis emphasizes the urgent need for a protective pesticide risk assessment for amphibians to preserve and promote stable amphibian populations in agricultural landscapes.
The role of alternative resources for pollinators and aphid predators in agricultural landscapes
(2021)
The world wide decline of insects is often associated with loss of natural and semi-natural habitat caused by intensified land-use. Many insects provide important ecosystem services to agriculture, such as pest control or pollination. To efficiently promote insects on remaining semi-natural habitat we need precise knowledge of their requirements to non-crop habitat. This thesis focuses on identifying
the most important semi-natural habitats (forest edges, grasslands, and semi-open habitats) for pollinators and natural enemies of crop pests with respect to their food resource requirements. Special
attention is given to floral resources and their spatio-temporal distribution in agricultural landscapes.
Floral resource maps might get closer at characterizing landscapes the way they are experienced by insects compared to classical habitat maps. Performance of the two map types was compared on the prediction of wild bees and natural enemies that consume nectar and pollen, identifying habitats of special importance in the process. In wild bees, influences of spatio-temporal floral resource availability were analysed as well as habitat preferences of specific groups of bees. Understanding dietary needs of natural enemies of crop pests requires additional knowledge on prey use. To this end, ladybird gut contents have been analysed by means of high-throughput sequencing for insight into aphid prey-use.
Results showed, that wild bees were predicted better by floral resource maps compared to classical habitat maps. Forest edge area, as well as floral resources in forest edges had positive effects on abundance and diversity of rare bees and important crop pollinators. Similar patterns were retained for grassland diversity. Especially early floral resources seemed to have positive effects on wild bees. Crops and fruit trees produced a resource pulse in April that exceeded floral resource availability in May and June by tenfold. Most floral resources in forest edges appeared early in the season, with the highest floral density per area. Grasslands provided the lowest amount of floral resources but highest diversity, which was evenly distributed over the season.
Despite natural enemies need for floral resources, classical habitat maps performed better at predicting natural enemies of crop pests compared to floral resource maps. Classical habitat maps revealed a positive effect of forest edge habitat on the abundance of pest enemies, which translated into improved aphid control. Results from gut content analysis reveal high portions of pest aphid species and nettle aphids as well as a broader insight into prey spectra retained from ladybirds collected from sticky traps compared to individuals collected by hand. The aphid specific primer designed for this purpose will be helpful for identifying aphid consumption by ladybirds in future studies.
Findings of this thesis show the potential of floral resource maps for understanding interactions of wild bees and the landscape but also indicate that natural enemies are limited by other resources. I would like to highlight the positive effects of forest edges for different groups of bees as well as natural enemies and their performance on pest control.
Mathematical models of species dispersal and the resilience of metapopulations against habitat loss
(2021)
Habitat loss and fragmentation due to climate and land-use change are among the biggest threats to biodiversity, as the survival of species relies on suitable habitat area and the possibility to disperse between different patches of habitat. To predict and mitigate the effects of habitat loss, a better understanding of species dispersal is needed. Graph theory provides powerful tools to model metapopulations in changing landscapes with the help of habitat networks, where nodes represent habitat patches and links indicate the possible dispersal pathways between patches.
This thesis adapts tools from graph theory and optimisation to study species dispersal on habitat networks as well as the structure of habitat networks and the effects of habitat loss. In chapter 1, I will give an introduction to the thesis and the different topics presented in this thesis. Chapter 2 will then give a brief summary of tools used in the thesis.
In chapter 3, I present our model on possible range shifts for a generic species. Based on a graph-based dispersal model for a generic aquatic invertebrate with a terrestrial life stage, we developed an optimisation model that models dispersal directed to predefined habitat patches and yields a minimum time until these patches are colonised with respect to the given landscape structure and species dispersal capabilities. We created a time-expanded network based on the original habitat network and solved a mixed integer program to obtain the minimum colonisation time. The results provide maximum possible range shifts, and can be used to estimate how fast newly formed habitat patches can be colonised. Although being specific for this simulation model, the general idea of deriving a surrogate can in principle be adapted to other simulation models.
Next, in chapter 4, I present our model to evaluate the robustness of metapopulations. Based on a variety of habitat networks and different generic species characterised by their dispersal traits and habitat demands, we modeled the permanent loss of habitat patches and subsequent metapopulation dynamics. The results show that species with short dispersal ranges and high local-extinction risks are particularly vulnerable to the loss of habitat across all types of networks. On this basis, we then investigated how well different graph-theoretic metrics of habitat networks can serve as indicators of metapopulation robustness against habitat loss. We identified the clustering coefficient of a network as the only good proxy for metapopulation robustness across all types of species, networks, and habitat loss scenarios.
Finally, in chapter 5, I utilise the results obtained in chapter 4 to identify the areas in a network that should be improved in terms of restoration to maximise the metapopulation robustness under limited resources. More specifically, we exploit our findings that a network’s clustering coefficient is a good indicator for metapopulation robustness and develop two heuristics, a Greedy algorithm and a deducted Lazy Greedy algorithm, that aim at maximising the clustering coefficient of a network. Both algorithms can be applied to any network and are not specific to habitat networks only.
In chapter 6, I will summarize the main findings of this thesis, discuss their limitations and give an outlook of future research topics.
Overall this thesis develops frameworks to study the behaviour of habitat networks and introduces mathematical tools to ecology and thus narrows the gap between mathematics and ecology. While all models in this thesis were developed with a focus on aquatic invertebrates, they can easily be adapted to other metapopulations.
Rivers play an important role in the global water cycle, support biodiversity and ecological integrity. However, river flow and thermal regimes are heavily altered in dammed rivers. These impacts are being exacerbated and become more apparent in rivers fragmented by multiple dams. Recent studies mainly focused on evaluating the cumulative impact of cascade reservoirs on flow or thermal regimes, but the role of upstream reservoirs in shaping the hydrology and hydrodynamics of downstream reservoirs remains poorly understood. To improve the understanding of the hydrodynamics in cascade reservoirs, long-term observational data are used in combination with numerical modeling to investigate the changes in flow and thermal regime in three cascade reservoirs at the upper reach of the Yangtze River. The three studied reservoirs are Xiluodu (XLD), Xiangjiaba (XJB) and Three Gorges Reservoir (TGR). In addition, the effects of single reservoir operation (at seasonal/daily time scale) on hydrodynamics are examined in a large tributary of TGR. The results show that the inflow of TGR has been substantially altered by the two upstream reservoirs with a higher discharge in spring and winter and a reduced peak flow in summer. XJB had no obvious contribution to the variations in inflow of TGR. The seasonal water temperature of TGR was also widely affected by the upstream two reservoirs, i.e., an increase in winter and decrease in spring, associated with a delay in water temperature rise and fall. These effects will probably be intensified in the coming years due to the construction of new reservoirs. The study also underlines the importance of reservoir operation in shaping the hydrodynamics of TGR. The seasonal dynamics of density currents in a tributary bay of TGR are closely related to seasonal reservoir operations. In addition, high-frequency water level fluctuations and flow velocity variations were observed in response to periodic tributary bay oscillations, which are driven by the diurnal discharge variations caused by the operation of TGR. As another consequence of operation of cascade reservoirs, the changes in TGR inflow weakened spring thermal stratification and caused warming in spring, autumn and winter. In response to this change, the intrusions from TGR occurred more frequently as overflow and earlier in spring, which caused a sharp reduction in biomass and frequency of phytoplankton blooms in tributary bays of TGR. This study suggests that high-frequency bay oscillations can potentially be used as an efficient management strategy for controlling algal blooms, which can be included in future multi-objective ecological conservation strategies.
Although most plastic pollution originates on land, current research largely remains focused on aquatic ecosystems. Studies pioneering terrestrial microplastic research have adapted analytical methods from aquatic research without acknowledging the complex nature of soil. Meanwhile, novel methods have been developed and further refined. However, methodical inconsistencies still challenge a comprehensive understanding of microplastic occurrence and fate in and on soil. This review aims to disentangle the variety of state-of-the-art sample preparation techniques for heterogeneous solid matrices to identify and discuss best-practice methods for soil-focused microplastic analyses. We show that soil sampling, homogenization, and aggregate dispersion are often neglected or incompletely documented. Microplastic preconcentration is typically performed by separating inorganic soil constituents with high-density salt solutions. Not yet standardized but currently most used separation setups involve overflowing beakers to retrieve supernatant plastics, although closed-design separation funnels probably reduce the risk of contamination. Fenton reagent may be particularly useful to digest soil organic matter if suspected to interfere with subsequent microplastic quantification. A promising new approach is extraction of target polymers with organic solvents. However, insufficiently characterized soils still impede an informed decision on optimal sample preparation. Further research and method development thus requires thorough validation and quality control with well-characterized matrices to enable robust routine analyses for terrestrial microplastics.
Internationale Bildungsstudien (TIMSS und PISA) offenbarten, dass es deutschen Schülern nur begrenzt gelingt, ihr erworbenes Wissen im Physikunterricht zur Problemlösung in neuen Kontexten zu nutzen. Als Grund nennen die Studien die gering ausgeprägte Kompetenz-erwartung in Bezug zum Fach Physik. Die Folge ist eine geringe Motivation der Lernenden, physikalische Aufgaben zu lösen. Studien zeigen aber auch, dass die Motivation beim Lernen durch den Einsatz digitaler Lernmedien gesteigert werden konnte. Aus diesem Grund wird in dieser Arbeit untersucht, ob das Vertrauen in die eigenen Fähigkeiten durch das Lernen in einer integrierten Lernumgebung gefördert werden kann. Im Rahmen eines Design-Based-Research-Forschungsansatzes (DBR) wurde eine integrierte Lernumgebung „Wärmelehre“ mit digitalen Lernmedien für den Physikunterricht gestaltet, die dann in zwei Schulformen (IGS und Gymnasium) innerhalb einer quasi-experimentellen Feldstudie erprobt wurde. Im 1. Zyklus des DBR wurden die Wirkungen des selbstständigen Lernens mit digitalen/analogen Medien in Einzelarbeit untersucht. Die Ergebnisse der Wissenstests zeigen einen höheren Lernerfolg bei den Lernenden der Experimentalgruppen, der sich aber nicht signifikant von den Lernenden der Kontrollgruppen (analoge Medien) unterscheidet. Die Lernenden konnten sich in der integrierten Lernumgebung mit Unterstützung beider Medienformate selbstständig Fachwissen aneignen und problembasierte Textaufgaben lösen. Die Ergebnisse der Befragungen der Lernenden zeigen, dass sich die Lerngruppen signifikant in ihrem erlebten Grad der Selbststeuerung unterscheiden. Die Lernenden beider Experimentalgruppen bewerten ihren Handlungsspielraum besser als die Lernenden der beiden Kontrollgruppen. Ebenfalls konnte festgestellt werden, dass sich die individuellen Lernvoraussetzungen, der Lernstiltyp, das Kompetenzerleben und die Aspekte der Medien-gestaltung wechselseitig beeinflussen und auf den Lernerfolg wirken. Die Ergebnisse der Lernstilanalyse zeigen, dass sich selbst kleine Lerngruppen heterogen zusammensetzen. Demnach scheint es für einen guten Lernerfolg notwendig zu sein, dass die Lehrenden, die Lernumgebung an die individuellen Lernpräferenzen der Lernenden der Lerngruppe anpassen. Aus den Ergebnissen lässt sich als Konsequenz für den Physikunterricht ableiten, dass Selbstlernphasen mit digitalen Lernmedien regelmäßig in den Unterricht integriert werden sollten, um die Problemlöse- und die Selbststeuerungskompetenz zu fördern. Es ist von Vorteil, wenn die Lehrenden für die Gestaltung einer Lernumgebung, das Vorwissen, die individuellen Lernvoraussetzungen und die Zusammensetzung der Lerngruppe (Lernstiltyp) als Qualitätsdimensionen erfassen. Im Re-Design werden Vorschläge unterbreitet, wie die integrierte Lernumgebung lernstilgerecht weiterentwickelt werden kann. Im 2. Zyklus soll dann erforscht werden, ob sich Unterschiede im Lernerfolg und in den untersuchten Aspekten zeigen, wenn die Lernenden in Einzelarbeit, in Partnerarbeit oder in ihrer Lernstilgruppe selbstgesteuert lernen, um die Lernumgebung zyklisch weiterzuentwickeln.
This thesis examined two specific cases of point and diffuse pollution, pesticides and salinisation, which are two of the most concerning stressors of Germany’s freshwater bodies. The findings of this thesis were organized into three major components, of which the first component presents the contribution of WWTPs to pesticide toxicity (Chapter 2). The second component focuses on the current and future background salt ion concentrations under climate change with the absence of anthropogenic activities (Chapter 3). Finally, the third major component shows the response of invertebrate communities in terms of species turnover to levels of salinity change, considered as a proxy for human-driven salinisation (Chapter 4).
Eine zutreffende Diagnose über den aktuellen Kenntnisstand der jeweiligen Schülerinnen und Schüler ist notwendig, um adäquat in Gruppenarbeitsprozesse intervenieren zu können. Von diesem Zusammenhang wird in der Literatur weit-gehend ausgegangen, jedoch gibt es bisher kaum empirische Studien, die diesen belegen. Die vorliegende Arbeit widmet sich schwerpunktmäßig dem Interventi-onsverhalten von Studierenden. Dabei wird die prozessdiagnostische Fähigkeit „Deuten“ zugrundegelegt, um unterschiedliches Interventionsverhalten auf diese Fähigkeit zurückführen zu können. Sowohl beim Aufbau diagnostischer Fähig-keiten als auch bei der (Weiter-)Entwicklung des eigenen Lehrerhandelns gilt Reflexion als hilfreich. Entsprechend wird auch das Zusammenspiel von Pro-zessdiagnose und Reflexionsverhalten sowie von Interventionsverhalten und Reflexionsverhalten untersucht.
Für die Erhebung der prozessdiagnostischen Fähigkeit „Deuten“ wurden drei Videovignetten erstellt und in das Videodiagnosetool ViviAn eingebunden. Die Videovignetten zeigen jeweils vier Schülerinnen, die sich mit dem Thema „Ter-me“ beschäftigen. Im Rahmen eines Lehr-Lern-Labores wurden über vier Se-mester hinweg alle teilnehmenden Studierenden dazu angehalten, die Videovig-netten zu bearbeiten. Ebenso konzipierten sie jeweils zu dritt eine Laborstation im Mathematik-Labor „Mathe ist mehr“ und erprobten diese mit einer Schul-klasse. Dabei wurden die Interventionen der Studierenden in die Gruppenarbeits-prozesse der Schülerinnen und Schüler videographiert. Anschließend reflektierten die Studierenden in Kleingruppen über die Erprobungen und über die getätigten Interventionen. Die Reflexionsgespräche wurden ebenfalls videographiert.
Es zeigt sich, dass die Studierenden, die sich zum Zeitpunkt der Erhebung im Masterstudium befanden, noch Entwicklungsspielraum in Bezug auf ihre pro-zessdiagnostische Fähigkeit „Deuten“ besitzen. Im Hinblick auf die Interventio-nen waren responsive Interventionen häufiger angemessen als invasive Interven-tionen, wobei responsive Internvetionen auch vergleichsweise häufiger dazu führten, dass mehr Schülerinnen und Schüler nach der Intervention aktiv waren. Studierende mit höherer prozessdiagnostischer Fähigkeit „Deuten“ intervenierten jedoch häufiger invasiv und tätigten dabei trotzdem angemessenere und aktivie-rendere Interventionen als ihre Kommilitoninnen und Kommilitonen. Entspre-chend scheint sich die prozessdiagnostische Fähigkeit „Deuten“ positiv auf die Interventionen der Studierenden auszuwirken und sollte daher bereits im Rah-men des (Lehramts-)Studiums verstärkt geschult werden.
Abdriftbedingte Pflanzenschutzmittelrückstände in unbehandelten Kulturen auf angrenzenden Flächen
(2020)
Die vorliegende Arbeit beschäftigt sich mit der Abdrift von Pflanzenschutzmitteln (PSM), die auf Lebensmittelkulturen in angrenzenden Flächen, insbesondere in benachbarte Haus- und Kleingärten, gelangt. In einer Reihe von Windtunnelversuchen wurde die Abdrift von PSM aus Flächen- und Raumkulturen während der Applikation mit zwei verschiedenen Testsystemen nachgestellt. Das Testsystem Flächenkultur simuliert die Applikation auf Flächenkulturen, das Testsystem Raumkultur die auf Raumkulturen. Auf der Nicht-Zielfläche wurden die auf Grund von Abdrift entstandenen Rückstände des verwendeten Tracers Pyranin nach der Applikation entfernungsabhängig auf den Lebensmittelkulturen Kopfsalat, Erdbeeren und Tomaten gemessen. Durch die gleichzeitige Messung der Bodendeposition konnten die Messwerte mit Hilfe von Regressionsgleichungen (R² = 0,88 bis 0,97) in Bezug zu den Abdrifteckwerten (AEW) gebracht werden. Dadurch war es möglich, erste Abschätzungen der Höhe von Rückständen vorzunehmen, die über Abdrift von landwirtschaftlichen Flächen auf benachbarte Lebensmittelkulturen im Freiland gelangen können. Diese Abschätzung ist zunächst limitiert auf die drei Versuchspflanzen. Die Versuche zeigen, dass sich die meisten durch Abdrift entstehenden Rückstände auf Salatköpfen wieder finden, gefolgt von Erdbeeren und Tomaten.
Neben dem experimentellen Teil wurden Analysen mit Geoinformationssystemen (GIS) durchgeführt, um die Nachbarschaftsverhältnisse zwischen landwirtschaftlich genutzten Flächen und Gartenflächen für ganz Deutschland und speziell für Rheinland-Pfalz (RLP) zu analysieren. Dazu wurden für die deutschlandweiten Berechnungen die Daten des amtlichen topographisch-kartographischen Informationssystems (ATKIS) und für die RLP-weiten Berechnungen die Daten des amtlichen Liegenschaftskatasterinformationssystem (ALKIS) verwendet. Beachtet werden muss, dass auf Grund der Datenbeschaffenheit eine Abgrenzung der Gartenflächen zu Wohnflächen nicht möglich ist. Deutschlandweit liegen etwa 1,1 % aller potentiellen Gartenflächen innerhalb eines 5 m Pufferbereichs um Raumkulturen bzw. innerhalb eines 2 m Pufferbereichs um Flächenkulturen. Für RLP sind es 0,75 %. Mit Hilfe eines Landbedeckungsdatensatzes der Fa. RLP AgroScience GmbH und den ALKIS-Daten konnte jedoch die exakte Gartenfläche für RLP auf 47.437 ha bestimmt werden. Basierend auf dieser Datengrundlage liegen 1,2 % der Gartenfläche von RLP innerhalb der genannten Pufferbereiche. Des Weiteren ergaben Berechnungen, dass 3 % der Gärten in RLP direkt angrenzend zu landwirtschaftlich genutzten Flächen liegen.
Im Rahmen dieser Arbeit wurden nicht nur Gärten betrachtet, die an landwirtschaftliche Flächen grenzen, sondern auch Nachbarschaftsverhältnisse zwischen ökologisch und konventionell bewirtschafteten Flächen untersucht. Diese Berechnungen erfolgten mit den Daten des Integrierten Verwaltungs- und Kontrollsystems (InVeKoS). Insgesamt grenzen in RLP 47,1 % aller ökologisch bewirtschafteten Flächen unmittelbar an konventionell bewirtschaftete Flächen an.
The increase in plastic particles (< 5 mm) in the environment is a global problem, which is in direct correlation to the increasing production quantity and variety. Through direct input (primary) or through the degradation of macroplastics (secondary), particles enter the environmental compartments water and/or soil via conventional material transportation paths. The research and development work on the sustainable removal of microplastic particles (inert organic chemical stressors, IOCS) from wastewater is based on the construction of polymer inclusion compounds. IOCS describe a group of organic chemical molecules, which demonstrate a high level of persistence upon entry in the ecosystem and whose degradation is limited.
Following the principle of Cloud Point Technology, a novel separation technique has been developed which induces particle growth in microplastics and allows easier separation from the water by volume increase according to the state of the art. The concept for the sustainable removal of microplastics from Herbort and Schuhen is based on a three-step synthesis. This concept was further optimized as part of the research and adapted to the criteria of resource efficiency and profitability. The fundamental research is premised on the hypothesis that van der Waals forces with short ranges and localized hydrophobic interactions between precursors and/or material and the IOCS to be connected can induce a fixation through the formation of an inclusion compound with particle growth. Through the addition of silicon-based ecotoxicologically irrelevant coagulation and inclusion units, it is possible to initiate molecular self-organization with the hydrophobic stressors in an aggregation process induced through water. It results in adhesive particle growth around the polymer particles and between particles. Subsequently, the polymer extract can be separated from aquatic media through simple and cost-effective filtration processes (e.g. sand trap, grease trap), due to the 10,000 times larger volume microplastic agglomerates.
The European landscape is dominated by intensive agriculture which leads to widespread impact on the environment. The frequent use of agricultural pesticides is one of the major causes of an ongoing decline in flower-visiting insects (FVIs). The conservation of this ecologically diverse assemblage of mobile, flying insect species is required by international and European policy. To counteract the decrease in species numbers and their abundances, FVIs need to be protected from anthropogenic stressors. European pesticide risk assessment was devised to prevent unacceptable adverse consequences of pesticide use on FVIs. However, there is an ongoing discussion by scientists and policy-makers if the current risk assessment actually provides adequate protection for FVI species.
The first main objective of this thesis was to investigate pesticide impact on FVI species. The scientific literature was reviewed to identify groups of FVIs, summarize their ecology, and determine their habitat. This was followed by a synthesis of studies about the exposure of FVIs in their habitat and subsequent effects. In addition, the acute sensitivity of one FVI group, bee species, to pesticides was studied in laboratory experiments.
The second main objective was to evaluate the European risk assessment for possible deficits and propose improvements to the current framework. Regulatory documents were screened to assess the adequacy of the guidance in place in light of the scientific evidence. The suitability of the honey bee Apis mellifera as the currently only regulatory surrogate species for FVIs was discussed in detail.
The available scientific data show that there are far more groups of FVIs than the usually mentioned bees and butterflies. FVIs include many groups of ecologically different species that live in the entire agricultural landscape. Their habitats in crops and adjacent semi-natural areas can be contaminated by pesticides through multiple pathways. Environmentally realistic exposure of these habitats can lead to severe effects on FVI population parameters. The laboratory studies of acute sensitivity in bee species showed that pesticide effects on FVIs can vary greatly between species and pesticides.
The follow-up critical evaluation of the European FVI risk assessment revealed major shortcomings in exposure and effect assessment. The honey bee proved to be a sufficient surrogate for bee species in lower tier risk assessment. Additional test species may be chosen for higher tier risk assessment to account for ecological differences. This thesis shows that the ecology of FVIs should generally be considered to a greater extent to improve the regulatory process. Data-driven computational approaches could be used as alternative methods to incorporate ecological trait data in spatio-temporal scenarios. Many open questions need to be answered by further research to better understand FVI species and promote necessary changes to risk assessment. In general, other FVI groups than bees need to be investigated. Furthermore, comprehensive data on FVI groups and their ecology need to be collected. Contamination of FVI habitat needs to be linked to exposure of FVI individuals and ecologically complex effects on FVI populations should receive increased attention. In the long term, European FVI risk assessment would benefit from shifting its general principles towards more scientifically informed regulatory decisions. This would require a paradigm shift from arbitrary assumptions and unnecessarily complicated schemes to a substantiated holistic framework.
Environmental processes transforming inorganic nanoparticles: implications on aquatic invertebrates
(2020)
Engineered inorganic nanoparticles (EINPs) are produced and utilized on a large scale and will end up in surface waters. Once in surface waters, EINPs are subjected to transformations induced by environmental processes altering the particles’ fate and inherent toxicity. UV irradiation of photoactive EINPs is defined as one effect-inducing pathway, leading to the formation of reactive oxygen species (ROS), increasing EINP toxicity by exerting oxidative stress in aquatic life. Simultaneously, UV irradiation of photoactive EINP alters the toxicity of co-occurring micropollutants (e.g. pesticides) by affecting their degradation. The presence of natural organic matter (NOM) reduces the agglomeration and sedimentation of EINPs, extending the exposure of pelagic species, while delaying the exposure of benthic species living in and on the sediment, which is suggested as final sink for EINPs. However, the joint impact of NOM and UV irradiation on EINP-induced toxicity, but also EINP-induced degradation of micropollutants, and the resulting risk for aquatic biota, is poorly understood. Although potential effects of EINPs on benthic species are increasingly investigated, the importance of exposure pathways (waterborne or dietary) is unclear, along with the reciprocal pathway of EINPs, i.e. the transport back from aquatic to terrestrial ecosystems. Therefore, this thesis investigates: (i) how the presence of NOM affects the UV-induced toxicity of the model EINP titanium dioxide (nTiO2) on the pelagic organism Daphnia magna, (ii) to which extent UV irradiation of nTiO2 in the presence and absence of NOM modifies the toxicity of six selected pesticides in D. magna, (iii) potential exposure pathway dependent effects of nTiO2 and silver (nAg) EINPs on the benthic organism Gammarus fossarum, and (iv) the transport of nTiO2 and gold EINPs (nAu) via the merolimnic aquatic insect Chaetopteryx villosa back to terrestrial ecosystems. nTiO2 toxicity in D. magna increased up to 280-fold in the presence of UV light, and was mitigated by NOM up to 12-fold. Depending on the pesticide, UV irradiation of nTiO2 reduced but also enhanced pesticide toxicity, by (i) more efficient pesticide degradation, and presumably (ii) formation of toxic by-products, respectively. Likewise, NOM reduced and increased pesticide toxicity, induced by (i) protection of D. magna against locally acting ROS, and (ii) mitigation of pesticide degradation, respectively. Gammarus’ energy assimilation was significantly affected by both EINPs, however, with distinct variation in direction and pathway dependence between nTiO2 and nAg. EINP presence delayed C. villosa emergence by up to 30 days, and revealed up to 40% reduced lipid reserves, while the organisms carried substantial amounts of nAu (~1.5 ng/mg), and nTiO2 (up to 2.7 ng/mg). This thesis shows, that moving test conditions of EINPs towards a more field-relevant approach, meaningfully modifies the risk of EINPs for aquatic organisms. Thereby, more efforts need to be made to understand the relative importance of EINP exposure pathways, especially since a transferability between different types of EINPs may not be given. When considering typically applied risk assessment factors, adverse effects on aquatic systems might already be expected at currently predicted environmental EINP concentrations in the low ng-µg/L range.
Gel effect induced by mucilage in the pore space and consequences on soil physical properties
(2020)
Water uptake, respiration and exudation are some of the biological functions fulfilled by plant roots. They drive plant growth and alter the biogeochemical parameters of soil in the vicinity of roots, the rhizosphere. As a result, soil processes such as water fluxes, carbon and nitrogen exchanges or microbial activity are enhanced in the rhizosphere in comparison to the bulk soil. In particularly, the exudation of mucilage as a gel-like substance by plant roots seems to be a strategy for plants to overcome drought stress by increasing soil water content and soil unsaturated hydraulic conductivity at negative water potentials. Although the variations of soil properties due to mucilage are increasingly understood, a comprehensive understanding of the mechanisms in the pore space leading to such variations is lacking.
The aim of this work was to elucidate the gel properties of mucilage in the pore space, i.e. interparticulate mucilage, in order to link changes of the physico-chemical properties in the rhizosphere to mucilage. The fulfilment of this goal was confronted to the three following challenges: The lack of methods for in situ detection of mucilage in soil; The lack of knowledge concerning the properties of interparticulate mucilage; The unknown relationship between the composition and the properties of model substances and root mucilage produced by various species. These challenges are addressed in several chapters.
In a first instance, a literature review picked information from various scientific fields about methods enabling the characterization of gels and gel phases in soil. The variation of soil properties resulting from biohydrogel swelling in soil was named the gel effect. The combined study of water entrapment of gels and gel phases in soil and soil structural properties in terms of mechanical stability or visual structures proved promising to disentangle the gel effect in soil.
The acquired methodical knowledge was used in the next experiments to detect and characterize the properties of interparticulate gel. 1H NMR relaxometry allows the non-invasive measure of water mobility in porous media. A conceptual model based on the equations describing the relaxation of water protons in porous media was developed to integrate the several gel effects into the NMR parameters and quantify the influence of mucilage on proton relaxation. Rheometry was additionally used to assess mucilage viscosity and soil microstructural stability and ESEM images to visualize the network of interparticulate gel. Combination of the results enabled to identify three main interparticulate gel properties: The spider-web effect restricts the elongation of the polymer chains due to the grip of the polymer network to the surface of soil particles. The polymer network effect illustrates the organization of the polymer network in the pore space according to the environment. The microviscosity effect describes the increased viscosity of interparticulate gel in contrast to free gel. The impact of these properties on soil water mobility and microstructural stability were investigated. Consequences on soil hydraulic and soil mechanical properties found in the literature are further discussed.
The influence of the chemical properties of polymers on gel formation mechanism and gel properties was also investigated. For this, model substances with various uronic acid content, degree of esterification and amount of calcium were tested and their amount of high molecular weight substances was measured. The substances investigated included pectic polysaccharides and chia seed mucilage as model polymers and wheat and maize root mucilage. Polygalacturonic acid and low-methoxy pectin proved as non-suitable model polymers for seed and root mucilage as ionic interactions with calcium control their properties. Mucilage properties rather seem to be governed by weak electrostatic interactions between the entangled polymer chains. The amount of high molecular weight material varies considerably depending on mucilage´s origin and seems to be a straight factor for mucilage’s gel effect in soil. Additionally to the chemical characterization of the high molecular weight compounds, determination of their molecular weight and of their conformation in several mucilages types is needed to draw composition-property profiles. The variations measured between the various mucilages also highlight the necessity to study how the specific properties of the various mucilages fulfill the needs of the plant from which they are exuded.
Finally, the integration of molecular interactions in gel and interparticulate gel properties to explain the physical properties of the rhizosphere was discussed. This approach offers numerous perspectives to clarify for example how water content or hydraulic conductivity in the rhizosphere vary according to the properties of the exuded mucilage. The hypothesis that the gel effect is general for all soil-born exudates showing gel properties was considered. As a result, a classification of soil-born gel phases including roots, seeds, bacteria, hyphae and earthworm’s exuded gel-like material according to their common gel physico-chemical properties is recommended for future research. An outcome could be that the physico-chemical properties of such gels are linked with the extent of the gel effect, with their impact on soil properties and with the functions of the gels in soil.
The bio-insecticide Bacillus thuringiensis israelensis (Bti) has worldwide become the most commonly used agentin mosquito control programs that pursue two main objectives: the control of vector-borne diseases and the reduction of nuisance, mainly coming frommosquitoes that emerge in large quantities from seasonal wetlands. The Upper Rhine Valley, a biodiversity hotspot in Germany, has been treated withBti for decades to reduce mosquito-borne nuisance and increase human well-being.Although Btiis presumed to be an environmentally safe agent,adverse effects on wetland ecosystems are still a matter of debate especially when it comes to long-term and indirect effects on non-target organisms. In light of the above, this thesis aims at investigating direct and indirect effects of Bti-based mosquito control on non-target organisms within wetland food chains.Effects were examinedin studies with increasingeco(toxico)logical complexity, ranging from laboratory over mesocosm to field approaches with a focus on the non-biting Chironomidae and amphibian larvae (Rana temporaria, Lissotriton sp.).In addition, public acceptance of environmentally less invasive alternative mosquito control methods was evaluated within surveys among the local population.
Chironomids were the most severely affected non-target aquatic invertebrates. Bti substantially reduced larval and adult chironomid abundances and modified their species composition. Repeated exposures to commonly used Bti formulations induced sublethal alterations of enzymatic biomarkers activityin frog tadpoles. Bti-induced reductions of chironomid prey availability indirectly decreased body size of newts at metamorphosis and increased predation on newt larvae in mesocosm experiments. Indirect effects of severe reductions in midge biomassmight equally be passed through aquatic but also terrestrial food chains influencing predators of higher trophic levels. The majority ofaffectedpeople in the Upper Rhine Valley expressed a high willingness to contributefinancially to environmentally less harmful mosquito control.Alternative approaches could still include Bti applications excepting treatment of ecologically valuable areas. Potentially rising mosquito levels could be counteracted with local acting mosquito traps in domestic and urban areas because mosquito presence was experienced as most annoying in the home environment.
As Bti-based mosquito control can adversely affect wetland ecosystems, its large-scale applications, including nature conservation areas, should be considered more carefully to avoid harmful consequences for the environmentat the Upper Rhine Valley.This thesis emphasizesthe importance to reconsiderthe current practice of mosquito control and encourage research on alternative mosquito control concepts that are endorsed by the local population. In the context ofthe ongoing amphibian and insect declinesfurther human-induced effects onwetlands should be avoided to preserve biodiversity in functioning ecosystems.
Die Nachhaltigkeitsberichterstattung kann als ein zentrales Element einer konsequenten Unternehmensstrategie zur Umsetzung der gesellschaftlichen Verantwortung (Corporate Social Responsibility) angesehen werden. Um die Unternehmen bei dieser Aufgabe zu unterstützen stellt die Global Reporting Initiative (GRI) mit ihren G4 Leitlinien einen Orientierungsrahmen bereit, dessen Anwendung sich allerdings für Klein und Mittelunternehmen sehr komplex gestaltet. Ein branchenspezifisches Sector Supplement für den Weinbau existiert derzeit noch nicht.
Ziel der vorliegenden Arbeit ist es, diese Forschungslücke durch die Entwicklung weinbauspezifischer Nachhaltigkeitsaspekte und Indikatoren zu schließen, um den Betrieben eine selbstständige GRI-konforme Berichterstattung zu ermöglichen.
Der Prozess zur Identifikation wesentlicher Nachhaltigkeitsaspekte und -indikatoren erfolgt mittels Erhebungs- und Auswertungsmethoden der qualitativen Sozialforschung in Form
von Workshops, betrieblichen Vorortanalysen und Experteninterviews.
Parallel dazu erfolgt eine umfassende Analyse der weinbaulichen Wertschöpfungskette in Form einer Internet- und Literaturrecherche. Diese umfasst vorrangig die ökologischen Nachhaltigkeitsaspekte als diejenigen Bestandteile weinbaulicher Tätigkeiten, die sich sowohl positiv als auch negativ auf die Umwelt auswirken können. Anschließend erfolgt die zentrale Priorisierung der identifizieren Handlungsfelder und Nachhaltigkeitsthemen durch die Stakeholder. Zur Visualisierung der bewerteten Handlungsfelder dient das Instrument der Wesentlichkeitsanalyse.
Auf dieser Basis erfolgt die Entwicklung eines Handlungsleitfadens zur Erstellung von Nachhaltigkeitsberichten in der Weinwirtschaft. Hiermit erlangen Weingüter die praktische Kompetenz ein eigenes Nachhaltigkeitsreporting anzugehen.
Im Rahmen der Arbeit wurde auch ein elektronisches Tool entwickelt, das den Betrieben die Möglichkeit eröffnet, betriebliche Umweltaspekte zu erfassen und zu bewerten. Gleichzeitig wird den Anwendern damit die Generierung eines überbetrieblichen Vergleichs der Umweltleistung ermöglicht (Benchmarking).
Eine weitere Forschungsfrage der vorliegenden Arbeit beschäftigt sich mit der Biodiversitätserfassung und -bewertung für Rebland. Hintergrund sind die bisher nur geringen Funde auf der durch das Bundesamt für Naturschutz festgelegten Kennartenlisten bzw. den HNV-Stichprobenflächen (High nature value farmland-Indikator) für Rebland.
Hierzu wurde mittels Geoinformationssystemen das Artenvorkommen in rheinland-pfälzischen Weinanbaugebieten analysiert und 30 Pflanzenarten als Indikatorarten für den Weinbau abgeleitet. Ergänzend wurden weinbergstypische, geschützte Tierarten als „Bonusarten“ identifiziert. Die Indikatorarten werden den Winzern als ein Instrument zur eigenständigen Erfassung der Biodiversität in den Weinbergen dienen und im Rahmen einer Nachhaltigkeitsberichterstattung herangezogen werden können.
Groundwater is essential for the provision of drinking water in many areas around the world. The ecosystem services provided by groundwater-related organisms are crucial for the quality of groundwater-bearing aquifers. Therefore, if remediation of contaminated groundwater is necessary, the remediation method has to be carefully selected to avoid risk-risk trade-offs that might impact these valuable ecosystems. In the present thesis, the ecotoxicity of the in situ remediation agent Carbo-Iron (a composite of zero valent nano-iron and active carbon) was investigated, an estimation of its environmental risk was performed, and the risk and benefit of a groundwater remediation with Carbo-Iron were comprehensively analysed.
At the beginning of the work on the present thesis, a sound assessment of the environmental risks of nanomaterials was impeded by a lack of guidance documents, resulting in many uncertainties on selection of suitable test methods and a low comparability of test results from different studies with similar nanomaterials. The reasons for the low comparability were based on methodological aspects of the testing procedures before and during the toxicity testing. Therefore, decision trees were developed as a tool to systematically decide on ecotoxicity test procedures for nanomaterials. Potential effects of Carbo-Iron on embryonic, juvenile and adult life stages of zebrafish (Danio rerio) and the amphipod Hyalella azteca were investigated in acute and chronic tests. These tests were based on existing OECD and EPA test guidelines (OECD, 1992a, 2013a, 2013b; US EPA, 2000) to facilitate the use of the obtained effect data in the risk assessment. Additionally, the uptake of particles into the test organisms was investigated using microscopic methods. In zebrafish embryos, effects of Carbo-Iron on gene expression were investigated. The obtained ecotoxicity data were complemented by studies with the waterflea Daphnia magna, the algae Scenedesmus vacuolatus, larvae of the insect species Chironomus riparius and nitrifying soil microorganisms.
In the fish embryo test, no passage of Carbo-Iron particles into the perivitelline space or the embryo was observed. In D. rerio and H. azteca, Carbo-Iron was detected in the gut at the end of exposure, but no passage into the surrounding tissue was detected. Carbo-Iron had no significant effect on soil microorganisms and on survival and growth of fish. However, it had significant effects on the growth, feeding rate and reproduction of H. azteca and on survival and reproduction in D. magna. Additionally, the development rate of C. riparius and the cell volume of S. vacuolatus were negatively influenced.
A predicted no effect concentration of 0.1 mg/L was derived from the ecotoxicity studies based on the no-effect level determined in the reproduction test with D. magna and an assessment factor of 10. It was compared to measured and modelled environmental concentrations for Carbo-Iron after application to an aquifer contaminated with chlorohydrocarbons in a field study. Based on these concentrations, risk quotients were derived. Additionally, the overall environmental risk before and after Carbo-Iron application was assessed to verify whether the chances for a risk-risk trade-off by the remediation of the contaminated site could be minimized. With the data used in the present study, a reduced environmental risk was identified after the application of Carbo-Iron. Thus, the benefit of remediation with Carbo-Iron outweighs potential negative effects on the environment.
Sediment transport contributes to the movement of inorganic and organic material in rivers. The construction of a dam interrupts the continuity of this sediment transport through rivers, causing sediments to accumulate within the reservoir. Reservoirs can also act as carbon sinks and methane can be released when organic matter in the sediment is degraded under anoxic conditions. Reservoir sedimentation poses a great threat to the sustainability of reservoirs worldwide, and can emit the potent greenhouse gas methane into the atmosphere. Sediment management measures to rehabilitate silted reservoirs are required to achieve both better water quantity and quality, as well as to mitigate greenhouse gas emissions.
This thesis aims at the improvement of sediment sampling techniques to characterize sediment deposits as a basis for accurate and efficient water jet dredging and to monitor the dredging efficiency by measuring the sediment concentration. To achieve this, we investigated freeze coring as a method to sample (gas-bearing) sediment in situ. The freeze cores from three reservoirs obtained were scanned using a non-destructive X-Ray CT scan technique. This allows the determination of sediment stratification and character-ization of gas bubbles to quantify methane emissions and serve as a basis for the identi-fication of specific (i.e. contaminated) sediment layers to be dredged. The results demon-strate the capability of freeze coring as a method for the characterization of (gas-bearing) sediment and overcomes certain limitations of commonly used gravity cores. Even though the core’s structure showed coring disturbances related to the freezing process, the general core integrity seems to not have been disturbed. For dredging purposes, we analyzed the impact pressure distribution and spray pattern of submerged cavitating wa-ter jets and determined the effects of impinging distances and angles, pump pressures and spray angles. We used an adapted Pressure Measurement Sensing technique to enhance the spatial distribution, which proved to be a comparatively easy-to-use meas-urement method for an improved understanding of the governing factors on the erosional capacity of cavitating water jets. Based on this data, the multiple linear regression model can be used to predict the impact pressure distribution of those water jets to achieve higher dredging accuracy and efficiency. To determine the dredging operational efficien-cy, we developed a semi-continuous automated measurement device to measure the sediment concentration of the slurry. This simple and robust device has lower costs, compared to traditional and surrogate sediment concentration measurement technolo-gies, and can be monitored and controlled remotely under a wide range of concentrations and grain-sizes, unaffected by entrained gas bubbles
Carabids, which are frequently distributed in agricultural landscapes, are natural enemies of different pests including slugs. Semi-natural habitats are known to affect carabids and thus, their potential to support natural pest control.
The impact of semi-natural habitats was investigated on carabids and slugs within different non-crop habitats (chapter 2). Most carabids and Deroceras reticulatum showed preferences for herbaceous semi-natural habitats, while Arion spp. occured mainly in woody habitats. An increase of predatory carabid abundance, which was linked to an inclining amount of semi-natural habitats in the landscape, and a decrease of Arion spp. densities, indicated a high potential for slug control in structural rich landscapes.
Effects of semi-natural habitats were investigated on predatory carabids and slugs in 18 wheat fields (chapter 3). Predatory carabid species richness was positively affected by the increasing amount of semi-natural habitats in the landscape, whereas predatory carabid abundance was neither influenced by adjacent habitat type nor by the proportion of semi-natural habitats in the landscape. The target pest species showed divergent patterns, whereas Arion spp. densities were highest in structural poor landscapes near woody margins. D. reticulatum was not affected by habitat type or landscape, reflecting its adaptation to agriculture. Results indicate an increased control of Arion spp. by carabids in landscapes with a high amount of semi-natural habitats.
Effects of semi-natural habitats and the influence of farming system was tested on carabid distribution within 18 pumpkin fields (chapter 4). Carabid species richness generally increased with decreasing distance to the field margins, whereas carabid abundance responded differently according to the adjacent habitat type. Farming system had no effect on carabids and landscape heterogeneity only affected carabids in organic pumpkin fields.
Slug and slug egg predation of three common carabid species was tested in single and double species treatments in the laboratory (chapter 5). Results show additive and synergistic effects depending on the carabid species. In general, semi-natural habitats can enhance the potential of slug control by carabids. This counts especially for Arionid slugs. Semi-natural habitats can support carabid communities by providing shelter, oviposition and overwintering sites as wells as complementary food sources. Therefore, it is important to provide a certain amount of non-crop habitats in agricultural landscapes.
Grapevine growers have struggled with defending their crops against pests and diseases since the domestication of grapevine over 6000 ears ago. Since then, new growing methods paired with a better nderstanding of the ecological processes in the vineyard ecosystem continue to improve quality and quantity of grape harvests. In this thesis I am describing the effects of two recent innovations in viticulture on pest and beneficial arthropods in vineyards; Fungus-resistant grapevine cultivars (PIWIs) and the pruning system semi-minimal pruned hedge (SMPH). The SMPH pruning system allows for a drastic reduction of manual labor in the vineyard, and PIWIs are resistant to two of the most common fungal diseases of grapevine and therefore allow a drastic reduction of fungicide applications compared to conventional varieties. Heavy use of pesticides is linked to a number of problems, including pollution of waterways, negative effects on human health, and biodiversity loss. Here, I studied the effects of fungicide reduction and minimal pruning on arthropods that are beneficial for natural pest suppression in the vineyard ecosystem such as predatory mites, spiders, ants, earwigs, and lacewings. All of these groups either benefitted from the reduction of fungicide sprayings or were not significantly affected. Structural changes in the canopy of SMPH grapevines altered the microclimate in the canopy which in turn influenced some of the arthropods living in it. Overall, my findings suggest that PIWIs and SMPH, both in combination or separately, improve conditions for natural pest control. This adds to other advantages of these innovative management practices such as a reduction in production cost and a smaller impact on the environment.
Invasive species often have a significant impact on the biodiversity of ecosystems and the species native to it. One of the worst invaders worldwide is Aphanomyces astaci, the causative agent of the crayfish plague, an often fatal disease to crayfish species not native to North America. Aphanomyces astaci originates from North America and was introduced to Europe in the midst of the 19th century. Since then, it spread throughout Europe diminishing the European crayfish populations. The overall aim of this thesis was to evaluate the threat that A. astaci still poses to European crayfish species more than 150 years after its introduction to Europe. In the first part of the thesis, crayfish specimens, which are available in the German pet trade, were tested for infections with A. astaci. Around 13% of the tested crayfish were clearly infected with A. astaci. The study demonstrated the potential danger the pet trade poses for biodiversity through the import of alien species and their potential pathogens, in general. In the second part of the thesis, the A. astaci infection prevalence of crayfish species in wild populations in Europe was tested. While the stone crayfish, Austropotamobius torrentium, showed high susceptibility to different haplogroups of A. astaci, the narrow-clawed crayfish, Astacus leptodactylus, was able to survive infections, even by haplogroup B, which is considered to be highly virulent. In the last part of the thesis, A. astaci was traced back to its original distribution area of North America. While the crayfish plague never had such a devastating effect on crayfish in North America as it had in Europe, the reasons for the success of invasive crayfish within North America are not yet fully understood. It is possible that A. astaci increases the invasion success of some crayfish species. Several populations of the rusty crayfish, Orconectes rusticus, in the Midwest of North America were confirmed to be infected with A. astaci and a new genotype was identified, possibly indicating that each crayfish host is vector of a unique A. astaci genotype, even in North America. Overall, the present thesis provides evidence that A. astaci is still a major threat to the crayfish species indigenous to Europe. Crayfish mass mortalities still occur in susceptible crayfish species like A. torrentium even 150 years after the first introduction of A. astaci. While there are some indications for increased resistances through processes of co-evolution, the continuous introduction of crayfish species to Europe threatens to cause new outbreaks of the crayfish plague through the parallel introduction of new, highly virulent A. astaci strains.
The aquatic environment is exposed to multiple environmental pressures and mixtures of chemical substances, among them petroleum and petrochemicals, metals, and pesticides. Aquatic invertebrate communities are used as bioindicators to reflect long-term and integral effects. Information on the presence of species can be supplemented with information on their traits. SPEAR-type bioindicators integrate such trait information on the community level.
This thesis aimed at enhancing specificity of SPEAR-type bioindicators towards particular groups of chemicals, namely to mixtures of oil sands-derived compounds, hydrocarbons, and metals.
For developing a bioindicator for discontinuous contamination with oil-derived organic toxicants, a field study was conducted in the Canadian oil sands development region in Northern Alberta. The traits ‘physiological sensitivity towards organic chemicals’ and ‘generation time’ were integrated to develop the bioindicator SPEARoil, reflecting the community sensitivity towards oil sands derived contamination in relation to fluctuating hydrological conditions.
According to the SPEARorganic approach, a physiological sensitivity ranking of taxa was developed for hydrocarbon contamination originating from crude oil or petroleum distillates. For this purpose, ecotoxicological information from acute laboratory tests was enriched with rapid and mesocosm test results. The developed Shydrocarbons sensitivity values can be used in SPEAR-type bioindicators.
To specifically reflect metal contamination in streams via bioindicators, Australian field studies were re-evaluated with focus on the traits ‘physiological metal sensitivity’ and ‘feeding type’. Metal sensitivity values, however, explained community effects in the field only weakly. Instead, the trait ‘feeding type’ was strongly related to metal exposure. The fraction of predators in a community can, thus, serve as an indicator for metal contamination in the field.
Furthermore, several metrics reflecting exposure to chemical cocktails in the environment were compared using existing pesticide datasets. Exposure metrics based on the 5% fraction of species sensitivity distributions were found to perform best, however, closely followed by Toxic Unit metrics based on the most sensitive species of a community or Daphnia magna.
With 47% land coverage in 2016, agricultural land was one of the largest terrestrial biomes in Germany. About 70% of the agricultural land was cropped area with associated pesticide applications. Agricultural land also represents an essential habitat for amphibians. Therefore, exposure of amphibians to agrochemicals, such as fertilizers and pesticides, seems likely. Pesticides can be highly toxic for amphibians, even a fraction of the original application rate may result in high amphibian mortality.
To evaluate the potential risk of pesticide exposure for amphibians, the temporal coincidence of amphibian presence on agricultural land and pesticide applications (N = 331) was analyzed for the fire-bellied toad (Bombina bombina), moor frog (Rana arvalis), spadefoot toad (Pelobates fuscus) and crested newt (Triturus cristatus) during spring migration. In 2007 and 2008, up to 80% of the migrating amphibians temporally coincided with pesticide applications in the study area of Müncheberg, about 50 km east of Berlin. Pesticide interception by plants ranged between 50 to 90% in winter cereals and 80 to 90% in winter rape. The highest coincidence was observed for the spadefoot toad, where 86.6% of the reproducing population was affected by a single pesticide in winter rape during stem elongation with 80% pesticide interception by plants. Late migrating species, such as the fire-bellied toad and the spadefoot toad, overlapped more with pesticide applications than early migrating species, such as the moor frog, did. Under favorable circumstances, the majority of early migrants may not coincide with the pesticide applications of arable fields during spring migration.
To evaluate the potential effect of pesticide applications on populations of the common frog (Rana temporaria), a landscape genetic study was conducted in the vinicultural area of Southern Palatinate. Due to small sample sizes at breeding sites within viniculture, several DNA sampling methods were tested. Furthermore, the novel repeated randomized selection of genotypes approach was developed to utilize genetic data from siblings for more reliable estimates of genetic parameters. Genetic analyses highlighted three of the breeding site populations located in viniculture as isolated from the meta-population. Genetic differentiation among breeding site populations in the viniculture (median pairwise FST=0.0215 at 2.34 km to 0.0987 at 2.39 km distance) was higher compared to genetic differentiation among breeding site populations in the Palatinate Forest (median pairwise FST=0.0041 at 5.39 km to 0.0159 at 9.40 km distance).
The presented studies add valuable information about the risk of pesticide exposure for amphibians in the terrestrial life stage and possible effects of agricultural land on amphibian meta-populations. To conserve endemic amphibian species and their (genetic) diversity in the long run, the risk assessment of pesticides and applied agricultural management measures need to be adjusted to protect amphibians adequately. In addition, other conservation measures such as the creation of new suitable breeding site should be considered to improve connectivity between breeding site populations and ensure the persistence of amphibians in the agricultural land.
Soil organic matter (SOM) is a key component responsible for sequestration of organic molecules in soil and regulation of their mobility in the environment. The basic structure of SOM is a supramolecular assembly responding dynamically to the environmental factors and the presence of interacting molecules. Despite of the advances in the understanding of sorption processes, the relation between sorbate molecules, SOM supramolecular structure and its dynamics is limited. An example of a dynamic nature of SOM is a physicochemical matrix aging that is responsible for SOM structural arrangement. The underlying process of the physicochemical aging is the formation of water molecule bridges (WaMB) between functional groups of molecular segments. Since WaMB influence the stiffness of SOM structure, it was hypothesized that formation of WaMB contributes to the sequestration of organic molecules. However, this hypothesis has not been tested experimentally until now. Furthermore, the knowledge about the influence of organic molecules on WAMB is based solely on computer modeling studies. In addition, the influence of organic molecules on some physical phases forming SOM is not well understood. Especially, the interactions between organic molecules and crystalline phases represented by aliphatic crystallites, are only presumed. Thus, the investigation of those interactions in unfractioned SOM is of high importance.
In order to evaluate the involvement of WaMB in the sequestration of organic molecules and to increase our understanding about interactions of organic chemicals with WaMB or aliphatic crystallites, the following hypotheses were tested experimentally. 1) Similarly to crystalline phases in synthetic polymers, aliphatic crystallites, as a part of SOM, cannot be penetrated by organic molecules. 2) The stability of WaMB is determined by the ability of surrounding molecules to interact with water forming WaMB. 3) WaMB prevent organic molecules to leave the SOM matrix and contribute thus to their immobilization. In order to test the hypotheses 1 and 2, a set of experiments including treatment of soils with chosen chemicals was prepared. Interaction abilities of these chemicals were characterized using interaction parameters from the Linear Solvation Energy Relationship theory. WaMB characteristics were monitored using Differential Scanning Calorimetry (DSC) allowing to measure the WaMB thermal stability and the rigidity of SOM matrix; which in turn was determined by the heat capacity change. In addition, DSC and 13C NMR spectroscopy assessed thermal properties and the structure of aliphatic crystallites. The spiking of samples with a model compound, phenol, and measurements of its desorption allowed to link parameters of the desorption kinetics with WaMB characteristics.
The investigation showed that the WaMB stability is significantly reduced by the presence of molecules with H-donor/acceptor interaction abilities. The matrix rigidity associated with WaMB was mainly influenced by the McGowan’s volume of surrounding molecules, suggesting the importance of dispersion forces. The desorption kinetics of phenol followed a first order model with two time constants. Both of them showed a relation with WaMB stability, which supports the hypothesis that WaMB contribute to the physical immobilization of organic molecules. The experiments targeted to the crystallites revealed their structural change from the ordered to the disordered state, when in contact with organic chemicals. This manifested in their melting point depression and the decrease of overall crystallinity. Described structural changes were caused by molecules interacting with specific as well as non-specific forces, which suggests that aliphatic crystallites can be penetrated and modified by molecules with a broad range of interaction abilities.
This work shows that chosen organic molecules interact with constituents of SOM as exemplified on WaMB and aliphatic crystallites, and cause measurable changes of their structure and properties. These findings show that the relevance of aliphatic crystallites for sorption in soil may have been underestimated. The results support the hypothesis that physicochemical matrix aging significantly contributes to the immobilization of organic chemicals in SOM.
Während es eine Vielzahl von Arbeiten zu der technologischen Entwicklung im Bereich der erneuerbaren Energien gibt, fehlt es jedoch bislang an einer mikroökonomischen Analyse
der Verhaltensmuster der Akteure im Umfeld von Anlagen nach dem EEG. Als Akteure kommen hier in erster Linie der Anlagenbetreiber selbst und der Staat in Betracht.
Im Hinblick auf Anlagenbetrieb und Vergütung der erzeugten Energie können beide mit unterschiedlichsten Interessen und Nutzenkalkülen aufeinander treffen. Diese Arbeit untersucht
mikroökonomische Aspekte des EEG-Förderungssystems. Im Mittelpunkt der Betrachtung stehen die Förderungsmechanismen für Biogasanlagen, die im Hinblick auf mögliche Prinzipal-Agenten-Konflikte einer Untersuchung unterzogen werden.
Die Vermeidung von Lebensmittelabfällen als nicht-technische Strategie zur Umsetzung der Bioökonomie
(2018)
Das Konzept der Bioökonomie beruht auf der Vision einer Wirtschaft, die durch die bevorzugte Verwendung biogener Rohstoffe unabhängiger wird von der Nutzung fossiler Quellen und gleichzeitig einen Beitrag zu Klima- und Ressourcenschutz, Ernährungssicherung und Stärkung der heimischen Wirtschaft leisten kann. Da die land- und forstwirtschaftliche Bio-masseproduktion aufgrund knapper Flächen jedoch begrenzt ist und sich bereits heute die negativen Folgen einer verstärkten Nachfrage zeigen, wird bezweifelt, dass sich die Vision in nachhaltiger Weise realisieren lässt. Offizielle Bioökonomie-Strategien setzen auf einen Technik-basierten Umsetzungspfad, in der Hoffnung, mit Hilfe technischer Innovationen Biomasseproduktion und Umweltverbrauch zu entkoppeln. Kritiker aus Wissenschaft und Zivilgesellschaft stehen diesem Weg skeptisch gegenüber. Sie befürchten, dass Effizienzsteigerungen und die Entwicklung neuer, umweltverträglicher Konversionsprozesse nicht ausreichen werden, um potentiell negative Folgen einer verstärkten Biomassenutzung abzuwenden. Angesichts der natürlichen Grenzen der Biosphäre sehen sie vor allem nicht-technische Ansätze zur Veränderung von Produktions- und Konsummustern als unverzichtbare Voraus-setzungen an. Mit der Formulierung eines sozial-ökologischen Umsetzungspfads wird eine Modifizierung des Bioökonomie-Konzepts gefordert, von einem bloßen Wandel der Ressourcenbasis hin zu einer umfassenden gesellschaftlichen Transformation, mit dem Ziel, Ressourcenverbrauch und Rohstoffproduktion neu zu justieren.
Die Arbeit stellt anhand des Beispiels der Lebensmittelabfälle die Bedeutung nicht-technischer Ansätze für die Realisierung der Bioökonomie heraus. Die Basis bilden fünf Publikationen, von denen sich drei mit dem Aufkommen von Lebensmittelabfällen, den Ursachen ihrer Entstehung und möglichen Vermeidungsstrategien befassen. Die anderen beiden Veröffentlichungen behandeln Flächenkonkurrenzen in der Landwirtschaft sowie Implementierungspfade der Bioökonomie. Die Arbeit kommt zu dem Schluss, dass der Beitrag von Lebensmittelabfällen zur Bioökonomie auf zwei Weisen denkbar ist: Entweder können diese als Ausgangsstoff für die Biogasproduktion oder die Bioraffinerie genutzt werden, was der aktuell vorherrschenden Vorstellung entspricht. Oder es können durch eine Reduktion des Abfallaufkommens Ressourcen, die bisher in die Bereitstellung nicht konsumierter Lebensmittel flossen, für andere Biomassenutzungen freigesetzt werden.
Die Analyse des Abfallaufkommens und der damit verbundenen Umweltwirkungen, aber auch vorhandene Studien über die ökologischen Wirkungen von Abfallvermeidungs- und verwertungsoptionen zeigen, dass die Vermeidung unter dem Gesichtspunkt der Ressourceneffizienz die sinnvollere Option darstellt. Die Arbeit hebt das Potenzial hervor, das sich aus der Berücksichtigung einer Reduktion von Lebensmittelabfällen für die Bioökonomie ergeben könnte. So ist denkbar, dass durch einen effizienteren Umgang mit den bereits produzierten Nahrungsmitteln Ressourcen freigesetzt werden können, die den Spielraum für die Realisierung der Bioökonomie verbessern würden oder aber Perspektiven entstehen für alternative Formen des Landbaus, die eine umweltverträglichere Biomasseproduktion ermöglichen könnten. Da nicht-technische Ansätze in der aktuellen Bioökonomie-Debatte kaum Berücksichtigung finden, besteht Bedarf, diese in das politische Konzept der Bioökonomie einzubeziehen und den wissenschaftlichen Diskurs für diese Aspekte zu öffnen.
Assessment of renewable energy potentials based on GIS. A case study in southwest region of Russia
(2018)
In the present thesis, the initial conditions for the development of RES potentials for the production of wind, solar and biomass energy in the Krasnodar region (southwestern region of the Russian Federation) are examined using a multi-criteria assessment methodology. For the assessment of the RES potentials at regional scale, the prosed multi-criteria methodology based on the geographic information systems (GIS) and has been complemented by the evaluation and analysis of primary and secondary data as well as economic calculations relevant related to economic feasibility of RES projects.
Grundwasser ist eine lebenswichtige Ressource und gleichzeitig ein thermisch stabiler Lebensraum mit einer außergewöhnlichen Fauna. Aufgrund der Klimageschichte der letzten ca. 1,8 Millionen Jahre in Mitteleuropa war die Ausgangshypothese, dass die meisten Grundwasserarten an Temperaturen unterhalb von 14 °C angepasst sind und sich Temperaturerhöhungen daher negativ auf die Grundwasserfauna auswirken.
Um die Folgen einer Klimaerwärmung in situ beurteilen zu können, wurden anthropogen erwärmte Grundwässer als Modelle herangezogen. In ersten Teil dieser Arbeit wurden die Crustaceagemeinschaften natürlich temperierter und anthropogen erwärmter Standorte untersucht. Dazu wurden insgesamt 70 Grundwassermessstellen im Oberrheingraben über ein Jahr (2011 bis 2012) sechsmal beprobt. Ergänzend zu diesem synökologischen Ansatz wurde in einem zweiten Teil die Temperaturpräferenz ausgewählter Arten überprüft. Für diese autökologische Betrachtung wurde ein deutschlandweiter Datensatz herangezogen.
Die ausgewählten Untersuchungsgebiete haben sich als geeignete Modelle für die prognostizierten Temperaturerhöhungen herausgestellt. Die Temperatur erwies sich als einer der wichtigsten Parameter für die Crustaceagemeinschaften. Erwärmungen beeinflussen die Zusammensetzung der Gemeinschaften und die Diversität. Dabei zeigte sich, dass es artspezifisch unterschiedliche Temperaturpräferenzen gibt. Einige vermutlich weniger streng stygobionte Arten scheinen höhere Temperaturen zu tolerieren. Der Großteil der stygobionten Grundwasserarten bevorzugt allerdings Temperaturen unterhalb von 14 °C, wobei wenige Arten als „extrem kalt¬steno-therm“ einzustufen sind. Diese Arten wurden an Standorten nachgewiesen, die aufgrund der hydrologischen Verhältnisse relativ kühl sind und der Fauna auch zukünftig als kalte Refugien Schutz bieten könnten. Einer dieser Standorte ist aufgrund seiner Artenvielalt als „Hot Spot“ einzustufen. Die Ergebnisse legen nahe, dass vor allem kaltstenotherme Arten durch eine Klimaerwärmung und anthropogene Wärmeeinträge gefährdet sind.
Die Untersuchung zeigt, dass Grundwasserlebensräume vor Temperaturerhöhungen zu bewahren sind. Lokale anthropogene Wärmeeinträge sollten keine dauerhafte und großflächige Grundwassererwärmung über 14 °C zur Folge haben. Thermische Ein-träge sollten überwacht und bewertet werden. Es wird empfohlen, die bestehenden rechtlichen Rahmenbedingungen den ökologischen Erfordernissen anzupassen.
Die deutsche Holzhausbranche wächst seit Jahren, allerdings beschäftigen sich die Unternehmen nicht strategisch mit dem Thema Marketing. Diese Dissertation bildet durch qualitative und quantitative Bewohnerbefragungen die Basis für die Entwicklung eines strategischen Marketingansatzes im Holzhausbereich.
Grassland management has been increasingly intensified throughout centuries since mankind started to control and modify the landscape. Species communities were always shaped alongside management changes leading to huge alterations in species richness and diversity up to the point where land use intensity exceeded the threshold. Since then biodiversity became increasingly lost. Today, global biodiversity and especially grassland biodiversity is pushed beyond its boundaries. Policymakers and conservationists seek for management options which fulfill the requirements of agronomic interests as well as biodiversity conservation alongside with the maintenance of ecosystem processes. However, there is and will always be a trade-off.
Earlier in history, natural circumstances in a landscape mainly determined regionally adapted land use. These regional adaptions shaped islands for many specialist species, and thus diverse species communities, favoring the establishment of a high β-diversity. With the raising food demand, these regional and traditional management regimes became widely unprofitable, and the invention of mineral fertilizers ultimately led to a wide homogenization of grassland management and, as follows, the loss of biotic heterogeneity. In the course of the green revolution, this immediate coherence and the dependency between grassland biodiversity and traditional land use practices becomes increasingly noticed. Indeed, some traditional forms of management such as meadow irrigation have been preserved in a few regions and thus give us the opportunity to directly investigate their long-term relevance for the species communities and ecosystem processes. Traditional meadow irrigation was a common management practice to improve productivity in lowland, but also alpine hay meadows throughout Europe until the 20th century. Nowadays, meadow irrigation is only practiced as a relic in a few remnant areas. In parts of the Queichwiesen meadows flood irrigation goes back to the Middle Ages, which makes them a predestined as a model region to study the long- and short-term effects of lowland meadow irrigation on the biodiversity and ecosystem processes.
Our study pointed out the conservation value of traditional meadow irrigation for the preservation of local species communities as well as the plant diversity at the landscape scale. The structurally more complex irrigated meadows lead to the assumption of a higher arthropod diversity (Orthodoptera, Carabidae, Araneae), which could not be detected. However, irrigated meadows are a significant habitat for moisture dependent arthropod species. In the light of the agronomic potential, flood irrigation could be a way to at least reduce fertilizer costs to a certain degree and possibly prevent overfertilization pulses which are necessarily hazardous to non-target ecosystems. Still, the reestablishment of flood irrigation in formerly irrigated meadows, or even the establishment of new irrigation systems needs ecological and economic evaluation dependent on regional circumstances and specific species communities, at which this study could serve as a reference point.
Natural pest control and pollination are important ecosystem services for agriculture. They can be supported by organic farming and by seminatural habitats at the local and landscape scale.
The potential of seminatural habitats to support predatory flies (chapters 2 and 3) and bees(chapter 7) at the local and landscape scale was investigated in seminatural habitats. Predatory flies were more abundant in woody habitats and positively related to landscape complexity. The diversity and the abundance of honey and wild bees were positively related to the supply of flowers offered in the seminatural habitats.
The influence of organic farming, adjacent seminatural habitats and landscape complexity on pest control (chapter 4) and pollination (chapter 6) was investigated in 18 pumpkin fields. Organic farming lacked strong effects both on the pest control and on the pollination of pumpkin.
Pest control is best supported at the local scale by the flower abundance in the adjacent habitat. The flower supply positively affected the density of natural enemies and tended to reduce aphid densities in pumpkin fields.
Pumpkin provides a striking example for a dominant role of wild pollinators for pollination success, because bumble bees are the key pollinators of pumpkin in Germany, despite a higher visitation frequency of honey bees. Pollination is best supported by landscape complexity. Bumble bee visits and as a result pollen delivery in pumpkin were negatively related to the dominance of agricultural land in the surrounding landscape.
The influence of aphid density (chapter 8) and pollination (chapter 5) on pumpkin yield was evaluated. Pumpkin yields were not affected by aphid densities observed in the pumpkin fields and not limited by pollination at the current levels of bee visitation.
In conclusion, especially seminatural habitats, that provide diverse, continuous floral resources, are important for natural enemies and pollinators. A sufficient proportion of different seminatural habitat types in agricultural landscapes should be maintained and restored. Thereby natural enemies such as predatory flies, wild pollinators such as bumble bees, and the pest control and pollination provided by them can be supported.
For a comprehensive understanding of evolutionary processes and for providing reliable prognoses about the future consequences of environmental change, it is essential to reveal the genetic basis underlying adaptive responses. The importance of this goal increases in light of ongoing climate change, which confronts organisms worldwide with new selection pressures and requires rapid evolutionary change to avoid local extinction. Thereby, freshwater ectotherms like daphnids are particularly threatened. Unraveling the genetic basis of local adaptation is complicated by the interplay of forces affecting patterns of genetic divergence among populations. Due to their key position in freshwater communities, cyclic parthenogenetic mode of reproduction and resting propagules (which form biological archives), daphnids are particularly suited for this purpose.
The aim of this thesis was to assess the impact of local thermal selection on the Daphnia longispina complex and to reveal the underlying genetic loci. Therefore, I compared genetic differentiation among populations containing Daphnia galeata, Daphnia longispina and their interspecific hybrids across time, space, and species boundaries. I revealed strongly contrasting patterns of genetic differentiation between selectively neutral and functional candidate gene markers, between the two species, and among samples from different lakes, suggesting (together with a correlation with habitat temperatures) local thermal selection acting on candidate gene TRY5F and indicating adaptive introgression. To reveal the candidate genes’ impact on fitness, I performed association analyses among data on genotypes and phenotypic traits of D. galeata clones from seven populations. The tests revealed a general temperature effect as well as inter-population differences in phenotypic traits and imply a possible contribution of the candidate genes to life-history traits. Finally, utilizing a combined population transcriptomic and reverse ecology approach, I introduced a methodology with a wide range of applications in evolutionary biology and revealed that local thermal selection was probably a minor force in shaping sequence and gene expression divergence among four D. galeata populations, but contributed to sequence divergence among two populations. I identified many transcripts possibly under selection or contributing strongly to population divergence, a large amount thereof putatively under local thermal selection, and showed that genetic and gene expression variation is not depleted specifically in temperature-related candidate genes.
In conclusion, I detected signs of local adaptation in the D. longispina complex across space, time, and species barriers. Populations and species remained genetically divergent, although increased gene flow possibly contributed, together with genotypes recruited from the resting egg bank, to the maintenance of standing genetic variation. Further work is required to accurately determine the influence of introgression and the effects of candidate genes on individual fitness. While I found no evidence suggesting a response to intense local thermal selection, the high resilience and adaptive potential regarding environmental change I observed suggest positive future prospects for the populations of the D. longispina complex. However, overall, due to the continuing environmental degradation, daphnids and other aquatic invertebrates remain vulnerable and threatened.
Pelagic oxyclines, the transition zone between oxygen rich surface waters and oxygen depleted deep waters, are a common characteristic of eutrophic lakes during summer stratification. They can have tremendous effects on the biodiversity and the ecosystem functioning of lakes and, to add insult to injury, are expected to become more frequent and more pronounced as climate warming progresses. On these grounds, this thesis endeavors to advance the understanding of formation, persistence, and consequences of pelagic oxyclines: We test, whether the formation of metalimnetic oxygen minima is intrinsically tied to a locally enhanced oxygen consuming process, investigate the relative importance of vertical physical oxygen transport and biochemical oxygen consumption for the persistence of pelagic oxyclines, and finally assess their potential consequences for whole lake cycling. To pursue these objectives, the present thesis nearly exclusively resorts to in situ measurements. Field campaigns were conducted at three lakes in Germany featuring different types of oxyclines and resolved either a short (hours to days) or a long (weeks to months) time scale. Measurements comprised temperature, current velocity, and concentrations of oxygen and reduced substances in high temporal and vertical resolution. Additionally, vertical transport was estimated by applying the eddy correlation technique within the pelagic region for the first time. The thesis revealed, that the formation of metalimnetic oxygen minima does not necessarily depend on locally enhanced oxygen depletion, but can solely result from gradients and curvatures of oxygen concentration and depletion and their relative position to each other. Physical oxygen transport was found to be relevant for oxycline persistence when it considerably postponed anoxia on a long time scale. However, its influence on oxygen dynamics was minor on short time scales, although mixing and transport were highly variable. Biochemical consumption always dominated the fate of oxygen in pelagic oxyclines. It was primarily determined by the oxidative breakdown of organic matter originating from the epilimnion, whereas in meromictic lakes, the oxidation of reduced substances dominated. Beyond that, the results of the thesis emphasize that pelagic oxyclines can be a hotspot of mineralization and, hence, short-circuit carbon and nutrient cycling in the upper part of the water column. Overall, the present thesis highlights the importance of considering physical transport as well as biochemical cycling in future studies.
World’s ecosystems are under great pressure satisfying anthropogenic demands, with freshwaters being of central importance. The Millennium Ecosystem Assessment has identified anthropogenic land use and associated stressors as main drivers in jeopardizing stream ecosystem functions and the
biodiversity supported by freshwaters. Adverse effects on the biodiversity of freshwater organisms, such as macroinvertebrates, may propagate to fundamental ecosystem functions, such as organic matter breakdown (OMB) with potentially severe consequences for ecosystem services. In order to adequately protect and preserve freshwater ecosystems, investigations regarding potential and observed as well as direct and indirect effects of anthropogenic land use and associated stressors (e.g. nutrients, pesticides or heavy metals) on ecosystem functioning and stream biodiversity are needed. While greater species diversity most likely benefits ecosystem functions, the direction and magnitude of changes in ecosystem functioning depends primarily on species functional traits. In this context, the functional diversity of stream organisms has been suggested to be a more suitable predictor of changes in ecosystem functions than taxonomic diversity.
The thesis aims at investigating effects of anthropogenic land use on (i) three ecosystem functions by anthropogenic toxicants to identify effect thresholds (chapter 2), (ii) the organic matter breakdown by three land use categories to identify effects on the functional level (chapter 3) and (iii)on the stream community along an established land-use gradient to identify effects on the community level.
In chapter 2, I reviewed the literature regarding pesticide and heavy metal effects on OMB, primary production and community respiration. From each reviewed study that met inclusion criteria, the toxicant concentration resulting in a reduction of at least 20% in an ecosystem function was standardized based on laboratory toxicity data. Effect thresholds were based on the relationship between ecosystem functions and standardized concentration-effect relationships. The analysis revealed that more than one third of pesticide observations indicated reductions in ecosystem functions at concentrations that are assumed being protective in regulation. However, high variation within and between studies hampered the derivation of a concentration-effect relationship and thus effect thresholds.
In chapter 3, I conducted a field study to determine the microbial and invertebrate-mediated OMB by deploying fine and coarse mesh leaf bags in streams with forested, agricultural, vinicultural
and urban riparian land use. Additionally, physicochemical, geographical and habitat parameters were monitored to explain potential differences in OMB among land use types and sites. Regarding results, only microbial OMB differed between land use types. The microbial OMB showed a negative relationship with pH while the invertebrate-mediated OMB was positively related to tree cover. OMB responded to stressor gradients rather than directly to land use.
In chapter 4, macroinvertebrates were sampled in concert with leaf bag deployment and after species identification (i) the taxonomic diversity in terms of Simpson diversity and total taxonomic
richness (TTR) and (ii) the functional diversity in terms of bio-ecological traits and Rao’s quadratic entropy was determined for each community. Additionally, a land-use gradient was established and the response of the taxonomic and functional diversity of invertebrate communities along this gradient was investigated to examine whether these two metrics of biodiversity are predictive for the rate of OMB. Neither bio-ecological traits nor the functional diversity showed a significant relationship with
OMB. Although, TTR decreased with increasing anthropogenic stress and also the community structure and 26 % of bio-ecological traits were significantly related to the stress gradient, any of these shifts propagated to OMB.
Our results show that the complexity of real-world situations in freshwater ecosystems impedes the effect assessment of chemicals and land use for functional endpoints, and consequently our potential to predict changes. We conclude that current safety factors used in chemical risk assessment may not be sufficient for pesticides to protect functional endpoints. Furthermore, simplifying real-world stressor gradients into few land use categories was unsuitable to predict and quantify losses in OMB. Thus, the monitoring of specific stressors may be more relevant than crude land use categories to detect effects on ecosystem functions. This may, however, limit the large scale assessment of the status of OMB. Finally, despite several functional changes in the communities the functional diversity over several trait modalities remained similar. Neither taxonomic nor functional diversity were suitable predictors of OMB. Thus, when understanding anthropogenic impacts on the linkage between biodiversity and ecosystem functioning is of main interest, focusing on diversity metrics that are clearly linked to the stressor in question (Jackson et al. 2016) or integrating taxonomic and functional metrics (Mondy et al., 2012) might enhance our predictive capacity.
Statistical eco(-toxico)logy
(2017)
Freshwaters are of immense importance for human well-being.
Nevertheless, they are currently facing unprecedented levels of threat from habitat loss and degradation, overexploitation, invasive species and
pollution.
To prevent risks to aquatic ecosystems, chemical substances, like agricultural pesticides, have to pass environmental risk assessment (ERA) before entering the market.
Concurrently, large-scale environmental monitoring is used for surveillance of biological and chemical conditions in freshwaters.
This thesis examines statistical methods currently used in ERA.
Moreover, it presents a national-scale compilation of chemical monitoring data, an analysis of drivers and dynamics of chemical pollution in streams and, provides a large-scale risk assessment by combination with results from ERA.
Additionally, software tools have been developed to integrate different datasets used in ERA.
The thesis starts with a brief introduction to ERA and environmental monitoring and gives an overview of the objectives of the thesis.
Chapter 2 addresses experimental setups and their statistical analyses using simulations.
The results show that current designs exhibit unacceptably low statistical power, that statistical methods chosen to fit the type of data provide higher power and that statistical practices in ERA need to be revised.
In chapter 3 we compiled all available pesticide monitoring data from Germany.
Hereby, we focused on small streams, similar to those considered in ERA and used threshold concentrations derived during ERA for a large-scale assessment of threats to freshwaters from pesticides.
This compilation resulted in the most comprehensive dataset on pesticide exposure currently available for Germany.
Using state-of-the-art statistical techniques, that explicitly take the limits of quantification into account, we demonstrate that 25% of small streams are at threat from pesticides.
In particular neonicotinoid pesticides are responsible for these threats.
These are associated with agricultural intensity and can be detected even at low levels of agricultural use.
Moreover, our results indicated that current monitoring underestimates pesticide risks, because of a sampling decoupled from precipitation events.
Additionally, we provide a first large-scale study of annual pesticide exposure dynamics.
Chapters 4 and 5 describe software solutions to simplify and accelerate the integration of data from ERA, environmental monitoring and ecotoxicology that is indispensable for the development of landscape-level risk assessment.
Overall, this thesis contributes to the emerging discipline of statistical ecotoxicology and shows that pesticides pose a large-scale threat to small streams.
Environmental monitoring can provide a post-authorisation feedback to ERA.
However, to protect freshwater ecosystems ERA and environmental monitoring need to be further refined and we provide software solutions to utilise existing data for this purpose.
Agricultural land-use may lead to brief pulse exposures of pesticides in edge-of-field streams, potentially resulting in adverse effects on aquatic macrophytes, invertebrates and ecosystem functions. The higher tier risk assessment is mainly based on pond mesocosms which are not designed to mimic stream-typical conditions. Relatively little is known on exposure and effect assessment using stream mesocosms.
Thus the present thesis evaluates the appliacability of the stream mesocosms to mimic stream-typical pulse exposures, to assess resulting effects on flora and fauna and to evaluate aquatic-terrestrial food web coupling. The first objective was to mimic stream-typical pulse exposure scenarios with different durations (≤ 1 to ≥ 24 hours). These exposure scenarios established using a fluorescence tracer were the methodological basis for the effect assessment of an herbicide and an insecticide. In order to evaluate the applicability of stream mesocosms for regulatory purposes, the second objective was to assess effects on two aquatic macrophytes following a 24-h pulse exposure with the herbicide iofensulfuron-sodium (1, 3, 10 and 30 µg/L; n = 3). Growth inhibition of up to 66 and 45% was observed for the total shoot length of Myriophyllum spicatum and Elodea canadensis, respectively. Recovery of this endpoint could be demonstrated within 42 days for both macrophytes. The third objective was to assess effects on structural and functional endpoints following a 6-h pulse exposure of the pyrethroid ether etofenprox (0.05, 0.5 and 5 µg/L; n = 4). The most sensitive structural (abundance of Cloeon simile) and functional (feeding rates of Asellus aquaticus) endpoint revealed significant effects at 0.05 µg/L etofenprox. This concentration was below field-measured etofenprox concentrations and thus suggests that pulse exposures adversely affect invertebrate populations and ecosystem functions in streams. Such pollutions of streams may also result in decreased emergence of aquatic insects and potentially lead to an insect-mediated transfer of pollutants to adjacent food webs. Test systems capable to assess aquatic-terrestrial effects are not yet integrated in mesocosm approaches but might be of interest for substances with bioaccumulation potential. Here, the fourth part provides an aquatic-terrestrial model ecosystem capable to assess cross-ecosystem effects. Information on the riparian food web such as the contribution of aquatic (up to 71%) and terrestrial (up to 29%) insect prey to the diet of the riparian spider Tetragnatha extensa was assessed via stable isotope ratios (δ13C and δ15N). Thus, the present thesis provides the methodological basis to assess aquatic-terrestrial pollutant transfer and effects on the riparian food web.
Overall the results of this thesis indicate, that stream mesocosms can be used to mimic stream-typical pulse exposures of pesticides, to assess resulting effects on macrophytes and invertebrates within prospective environmental risk assessment (ERA) and to evaluate changes in riparian food webs.
The global problematic issue of the olive oil industry is in its generation of large amounts of olive mill wastewater (OMW). The direct discharge of OMW to the soil is very common which presents environmental problems for olive oil producing countries. Both, positive as well as negative effects on soil have been found in earlier studies. Therefore, the current study hypothesized that whether beneficial effects or negative effects dominate depends on the prevailing conditions before and after OMW discharge to soil. As such, a better understanding of the OMW-soil interaction mechanisms becomes essential for sustainable safe disposal of OMW on soil and sustainable soil quality.
A field experiment was carried out in an olive orchard in Palestine, over a period of 24 months, in which the OMW was applied to the soil as a single application of 14 L m-2 under four different environmental conditions: in winter (WI), spring (SP), and summer with and without irrigation (SUmoist and SUdry). The current study investigated the effects of seasonal conditions on the olive mill wastewater (OMW) soil interaction in the short-term and the long-term. The degree and persistence of soil salinization, acidification, accumulation of phenolic compounds and soil water repellency were investigated as a function of soil depth and time elapsed after the OMW application. Moreover, the OMW impacts on soil organic matter SOM quality and quantity, total organic carbon (SOC), water-extractable soil organic carbon (DOC), as well as specific ultraviolet absorbance analysis (SUVA254) were also investigated for each seasonal application in order to assess the degree of OMW-OM decomposition or accumulation in soil, and therefore, the persisting effects of OMW disposal to soil.
The results of the current study demonstrate that the degree and persistence of relevant effects due to OMW application on soil varied significantly between the different seasonal OMW applications both in the short-term and the long-term. The negative effects of the potentially hazardous OMW residuals in the soil were highly dependent on the dominant transport mechanisms and transformation mechanisms, triggered by the ambient soil moisture and temperature which either intensified or diminished negative effects of OMW in the soil during and after the application season. The negative effects of OMW disposal to the soil decreased by increasing the retention time of OMW in soil under conditions favoring biological activity. The moderate conditions of soil moisture and temperature allowed for a considerable amount of applied OMW to be biologically degraded, while the prolonged application time under dry conditions and high temperature resulted in a less degradable organic fraction of the OMW, causing the OMW constituents to accumulate and polymerize without being degraded. Further, the rainfall during winter season diminished negative effects of OMW in the soil; therefore, the risk of groundwater contamination by non-degraded constituents of OMW can be highly probable during the winter season.
Conversion of natural vegetation into cattle pastures and croplands results in altered emissions of greenhouse gases (GHG), such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Their atmospheric concentration increase is attributed the main driver of climate change. Despite of successful private initiatives, e.g. the Soy Moratorium and the Cattle Agreement, Brazil was ranked the worldwide second largest emitter of GHG from land use change and forestry, and the third largest emitter from agriculture in 2012. N2O is the major GHG, in particular for the agricultural sector, as its natural emissions are strongly enhanced by human activities (e.g. fertilization and land use changes). Given denitrification the main process for N2O production and its sensitivity to external changes (e.g. precipitation events) makes Brazil particularly predestined for high soil-derived N2O fluxes.
In this study, we followed a bottom-up approach based on a country-wide literature research, own measurement campaigns, and modeling on the plot and regional scale, in order to quantify the scenario-specific development of GHG emissions from soils in the two Federal States Mato Grosso and Pará. In general, N2O fluxes from Brazilian soils were found to be low and not particularly dynamic. In addition to that, expected reactions to precipitation events stayed away. These findings emphasized elaborate model simulations in daily time steps too sophisticated for regional applications. Hence, an extrapolation approach was used to first estimate the influence of four different land use scenarios (alternative futures) on GHG emissions and then set up mitigation strategies for Southern Amazonia. The results suggested intensification of agricultural areas (mainly cattle pastures) and, consequently, avoided deforestation essential for GHG mitigation.
The outcomes of this study provide a very good basis for (a) further research on the understanding of underlying processes causing low N2O fluxes from Brazilian soils and (b) political attempts to avoid new deforestation and keep GHG emissions low.
The work presented in this thesis investigated interactions of selected biophysical processes that affect zooplankton ecology at smaller scales. In this endeavour, the extent of changes in swimming behaviour and fluid disturbances produced by swimming Daphnia in response to changing physical environments were quantified. In the first research question addressed within this context, size and energetics of hydrodynamic trails produced by Daphnia swimming in non-stratified still waters were characterized and quantified as a function of organisms’ size and their swimming patterns.
The results revealed that neither size nor the swimming pattern of Daphnia affects the width of induced trails or dissipation rates. Nevertheless, as the size and swimming velocity of the organisms increased, trail volume increased in proportional to the cubic power of Reynolds number, and the biggest trail volume was about 500 times the body volume of the largest daphnids. Larger spatial extent of fluid perturbation and prolonged period to decay caused by bigger trail volumes would play a significant role in zooplankton ecology, e.g. increasing the risk of predation.
The study also found that increased trail volume brought about significantly enhanced total dissipated power at higher Reynolds number, and the magnitudes of total dissipated power observed varied in the range of (1.3-10)X10-9 W.
Furthermore, this study provided strong evidence that swimming speed of Daphnia and total dissipated power in Daphnia trails exceeded those of some other selected zooplankton species.
In recognizing turbulence as an intrinsic environmental perturbation in aquatic habitats, this thesis also examined the response of Daphnia to a range of turbulence flows, which correspond to turbu-lence levels that zooplankton generally encounter in their habitats. Results indicated that within the range of turbulent intensities to which the Daphnia are likely to be exposed in their natural habitats, increasing turbulence compelled the organisms to enhance their swimming activity and swim-ming speed. However, as the turbulence increased to extremely high values (10-4 m2s-3), Daphnia began to withdraw from their active swimming behaviour. Findings of this work also demonstrated that the threshold level of turbulence at which animals start to alleviate from largely active swimming is about 10-6 m2s-3. The study further illustrated that during the intermediate range of turbu-lence; 10-7 - 10-6 m2s-3, kinetic energy dissipation rates in the vicinity of the organisms is consistently one order of magnitude higher than that of the background turbulent flow.
Swarming, a common conspicuous behavioural trait observed in many zooplankton species, is considered to play a significant role in defining freshwater ecology of their habitats from food exploitation, mate encountering to avoiding predators through hydrodynamic flow structures produced by them, therefore, this thesis also investigated implications of Daphnia swarms at varied abundance & swarm densities on their swimming kinematics and induced flow field.
The results showed that Daphnia aggregated in swarms with swarm densities of (1.1-2.3)x103 L-1, which exceeded the abundance densities by two orders of magnitude (i.e. 1.7 - 6.7 L-1). The estimated swarm volume decreased from 52 cm3 to 6.5 cm3, and the mean neighbouring distance dropped from 9.9 to 6.4 body lengths. The findings of this work also showed that mean swimming trajectories were primarily horizontal concentric circles around the light source. Mean flow speeds found to be one order of magnitude lower than the corresponding swimming speeds of Daphnia. Furthermore, this study provided evidences that the flow fields produced by swarming Daphnia differed considerably between unidirectional vortex swarming and bidirectional swimming at low and high abundances respectively.
Agriculture covers one third of the world land area and has become a major source of water pollution due to its heavy reliance on chemical inputs, namely fertilisers and pesticides. Several thousands of tonnes of these chemicals are applied worldwide annually and partly reach freshwaters. Despite their widespread use and relatively unspecific modes of action, fungicides are the least studied group of pesticides. It remains unclear whether the taxonomic groups used in pesticide risk assessment are protective for non-target freshwater fungi. Fungi and bacteria are the main microbial decomposers converting allochthonous organic matter (litter) into a more nutritious food resource for leaf-shredding macroinvertebrates. This process of litter decomposition (LD) is central for aquatic ecosystem because it fuels local and downstream food webs with energy and nutrients. Effects of fungicides on decomposer communities and LD have been mainly analysed under laboratory conditions with limited representation of the multiple factors that may moderate effects in the field.
In this thesis a field study was conducted in a German vineyard area to characterise recurrent episodic exposure to fungicides in agricultural streams (chapter 2) and its effects on decomposer communities and LD (chapter 3). Additionally, potential interaction effects of nutrient enrichment and fungicides on decomposer communities and LD were analysed in a mesocosm experiment (chapter 4).
In the field study event-driven water sampling (EDS) and passive sampling with EmporeTM styrene-divinylbenzene reverse phase sulfonated disks (SDB disks) were used to assess exposure to 15 fungicides and 4 insecticides. A total of 17 streams were monitored during 4 rainfall events within the local application period of fungicides in 2012. EDS exceeded the time-weighted average concentrations provided by the SDB disks by a factor of 3, though high variability among compounds was observed. Most compounds were detected in more than half of the sites and mean and maximum peak (EDS) concentrations were under 1 and 3 µg/l, respectively. Besides, SDB disk-sampling rates and a free-software solution to derive sampling rates under time-variable exposure were provided.
Several biotic endpoints related to decomposers and LD were measured in the same sampling sites as the fungicide monitoring, coinciding with the major litter input period. Our results suggest that polar organic fungicides in streams change the structure of the fungal community. Causality of this finding was supported by a subsequent microcosm experiment. Whether other effects observed in the field study, such as reduced fungal biomass, increased bacterial density or reduced microbial LD can be attributed to fungicides remains speculative and requires further investigation. By contrast, neither the invertebrate LD nor in-situ measured gammarid feeding rates correlated with water-borne fungicide toxicity, but both were negatively associated with sediment copper concentrations. The mesocosm experiment showed that fungicides and nutrients affect microbial decomposers differently and that they can alter community structure, though longer experiments are needed to determine whether these changes may propagate to invertebrate communities and LD. Overall, further studies should include representative field surveys in terms of fungicide pollution and physical, chemical and biological conditions. This should be combined with experiments under controlled conditions to test for the causality of field observations.
Leaf litter breakdown is a fundamental process in aquatic ecosystems, being mainly mediated by decomposer-detritivore systems that are composed of microbial decomposers and leaf-shredding, detritivorous invertebrates. The ecological integrity of these systems can, however, be disturbed, amongst others, by chemical stressors. Fungicides might pose a particular risk as they can have negative effects on the involved microbial decomposers but may also affect shredders via both waterborne toxicity and their diet; the latter by toxic effects due to dietary exposure as a result of fungicides’ accumulation on leaf material and by negatively affecting fungal leaf decomposers, on which shredders’ nutrition heavily relies. The primary aim of this thesis was therefore to provide an in-depth assessment of the ecotoxicological implications of fungicides in a model decomposer-detritivore system using a tiered experimental approach to investigate (1) waterborne toxicity in a model shredder, i.e., Gammarus fossarum, (2) structural and functional implications in leaf-associated microbial communities, and (3) the relative importance of waterborne and diet-related effects for the model shredder.
Additionally, knowledge gaps were tackled that were related to potential differences in the ecotoxicological impact of inorganic (also authorized for organic farming in large parts of the world) and organic fungicides, the mixture toxicity of these substances, the field-relevance of their effects, and the appropriateness of current environmental risk assessment (ERA).
In the course of this thesis, major differences in the effects of inorganic and organic fungicides on the model decomposer-detritivore system were uncovered; e.g., the palatability of leaves for G. fossarum was increased by inorganic fungicides but deteriorated by organic substances. Furthermore, non-additive action of fungicides was observed, rendering mixture effects of these substances hardly predictable. While the relative importance of the waterborne and diet-related effect pathway for the model shredder seems to depend on the fungicide group and the exposure concentration, it was demonstrated that neither path must be ignored due to additive action. Finally, it was shown that effects can be expected at field-relevant fungicide levels and that current ERA may provide insufficient protection for decomposer-detritivore systems. To safeguard aquatic ecosystem functioning, this thesis thus recommends including leaf-associated microbial communities and long-term feeding studies using detritus feeders in ERA testing schemes, and identifies several knowledge gaps whose filling seems mandatory to develop further reasonable refinements for fungicide ERA.
Recent estimates have confirmed that inland waters emit a considerable amount of CH4 and CO2 to the atmosphere at the regional and global scale. But these estimates are based on extrapolated measured data and lack of data from inland waters in arid and semi-arid regions and carbon sources from wastewater treatment plants (WWTPs) as well insufficient resolution of the spatiotemporal variability of these emissions.
Through this study, we analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. We investigated the effect of WWTPs on surrounding aquatic systems in term of CH4 and CO2 emission by presenting seasonally resolved data for dissolved concentrations of both gases in the effluents and in the receiving streams at nine WWTPs in Germany.
We investigated spatiotemporal variability of CH4 and CO2 emission from aquatic ecosystems by using of simple low-cost tools for measuring CO2 flux and bubble release rate from freshwater systems. Our estimates showed that reservoirs in semi-arid regions are oversaturated with CO2 and acted as net sources to the atmosphere. The magnitude of observed fluxes at the three water reservoirs in Jordan is comparable to those from tropical reservoirs (3.3 g CO2 m-2 d-1). The CO2 emission rate from these reservoirs is linked to changes of water surface area, which is the result of water management practices. WWTPs have been shown to discharge a considerable amount of CH4 (30.9±40.7 kg yr-1) and CO2 (0.06±0.05 Gg yr-1) to their surrounding streams, and emission rates of CH4 and CO2 from these streams are significantly enhanced by effluents of WWTPs up to 1.2 and 8.6 times, respectively.
Our results showed that both diffusive flux and bubble release rate varied in time and space, and both of emission pathways should be included and variability should be resolved adequately in further sampling and measuring strategies. We conclude that future emission measurements and estimates from inland waters may consider water management practices, carbon sources from WWTPs as well spatial and temporal variability of emission.
Die vorliegende Arbeit beschäftigt sich mit der Fragestellung, wie eine repräsentative und aussagekräftige Vergleichbarkeit hinsichtlich der Nachhaltigkeitsleistung (Ökoeffizienz) von Unternehmen branchenunabhängig gewährleistet werden kann trotz der Problematik der Definition repräsentativer Bewertungskriterien der Nachhaltigkeit, sowie der Heterogenität der zu bewertenden Branchen. Bisherige Konzepte zu Umwelt- und Nachhaltigkeitsmanagementsystemen (z.B. EMAS, ISO 14000, ISO 26000, EMASplus), zur Umweltleistungsmessung sowie zur Nachhaltigkeitsbewertung und -berichterstattung (z.B. DNK, GRI) sind mit ihren branchenunabhängigen Formulierung zu allgemein gehalten, um für eine konkrete effizienzorientierte Messung nachhaltigen Wirtschaftens von Unternehmen geeignet zu sein.
Folglich besteht kein System zur Messung der Umweltleistung, um den Forschungsbedarf der Herstellung einer aussagekräftigen Vergleichbarkeit der Ressourcen- und Energieverbräuche der Betriebe einer heterogenen Branche zu begegnen. Angesichts dessen wurde im Rahmen der Arbeit eine allgemeine und branchenunabhängig anwendbare aber dennoch –spezifische Methodik zur Herstellung der Vergleichbarkeit von Unternehmen einer Branche hinsichtlich der Ressourcen- und Energieeffizienz entwickelt. Dabei stellt der Kern der Methodik die Generierung eines betriebsindividuellen Gesamtgewichtungsfaktors dar (GGF-Konzept), welcher als Operationalisierung der Vergleichbarkeit angesehen werden kann und damit der Problematik der Heterogenität begegnet. Die Ermittlung von Kriteriengewichtungen im Rahmen des GGF-Konzeptes kann in Analogie zu einem Entscheidungsproblem bei Mehrfachzielsetzung (Multi Criteria Decision Making – MCDM) gesehen werden, da mehrere Kriterien und Sub-Kriterien zueinander in Relation gesetzt werden mussten. Infolgedessen stellte sich der Analytische-Hierarchie-Prozess als das geeignete Verfahren im Rahmen der Methodikentwicklung heraus. Anwendung fand die Methodik in einem ersten empirischen Test anhand einer ausgewählten Stichprobe von 40 Wäschereibetrieben. Dabei zeigten die Ergebnisse auf, dass repräsentatives sowie aussagekräftiges betriebsindividuelles Benchmarking der Ressourcen- und Energieverbräuche völlig unterschiedlicher und bislang nicht vergleichbarer Betriebe möglich wurde. Hierfür mussten zunächst branchenspezifische repräsentative Bewertungskriterien der Ressourcen- und Energieeffizienz bestimmt werden. Abschließend konnten betriebsspezifische Brennpunkte identifiziert und somit Handlungsempfehlungen zur Optimierung der Ressourcen- und Energieeffizienz der Wäschereibetriebe abgeleitet werden, sodass eine zielorientierte Reduzierung des Ressourcen- und Energieverbrauchs folgen kann.
During olive oil production, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil properties in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive plantation in winter, spring, and summer respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a three-times lower biodegradation performance, ten-fold higher soil water repellency, and a four-fold higher content of phenolic compounds. The soil properties of winter treatments were comparable to the control, which demonstrated the recovery potential of the soil ecosystem. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Significant accumulation or leaching effects to deeper soil were not observed. Therefore, the direct application of legally restricted OMW amounts to soil is considered acceptable during the moist seasons. Further research is needed to quantify the effect of spring treatments and to gain further insight into the composition and kinetics of organic OMW constituents in the soil.
The (un-)controlled application of olive oil mill wastewater (OMW) has positive and negative effects on soil quality. On the one hand it can be used as fertilizer, on the other hand especially the occurrence of soil water repellency is problematic. Due to this fact the objective of this study was to characterize the effects of OMW application on soil and to investigate the mechanisms that are in combination with changes of soil organic matter quality responsible for soil water repellency depending on the climatic conditions.
At first several locations of uncontrolled OMW disposal were screened for positive and negative im-pacts. Then, laboratory incubation experiments and finally a field experiment in Israel were conducted in order to determine the influence of climatic conditions. Besides standard soil parameters (pH, elec-tric conductivity, total carbon, dissolved organic carbon , specific UV-Absorption) it was focused on the determination of phenolic compounds, the carbon isotope ratio, the water drop penetration time and the contact angle as well as the thermal analysis.
This thesis shows that soil water repellency of OMW-polluted soils depends on the climatic conditions, i.e. the application season. In the laboratory as well as in the field the wettability of the soil was strongly reduced under hot and dry conditions. It was observed, that the stable carbon fraction characterized by a high calorific value is responsible for soil water repellency. In particular, amphiphilic substances, e.g. fatty acids, may interact with soil particles as a consequence of drying. On the contrary, no reduc-tion of the wettability of the soil was determined under moist conditions and degradation of organic matter of the OMW was enhanced. Nevertheless, too strong irrigation or rainfall, e.g. in winter, may leach phenolic ingredients of the OMW into the groundwater.
At the same time the application led to an increase of organic and inorganic nutrients, which should be emphasized as a positive effect. Due to these results, a controlled application of olive oil mill wastewater as alternative, low-cost and sustainable treatment option is recommended. But, instead of the current application season winter, the olive mill wastewater should be stored and not be spread before spring in order to avoid negative impacts on the soil.
In the new epoch of Anthropocene, global freshwater resources are experiencing extensive degradation from a multitude of stressors. Consequently, freshwater ecosystems are threatened by a considerable loss of biodiversity as well as substantial decrease in adequate and secured freshwater supply for human usage, not only on local scales, but also on regional to global scales. Large scale assessments of human and ecological impacts of freshwater degradation enable an integrated freshwater management as well as complement small scale approaches. Geographic information systems (GIS) and spatial statistics (SS) have shown considerable potential in ecological and ecotoxicological research to quantify stressor impacts on humans and ecological entitles, and disentangle the relationships between drivers and ecological entities on large scales through an integrated spatial-ecological approach. However, integration of GIS and SS with ecological and ecotoxicological models are scarce and hence the large scale spatial picture of the extent and magnitude of freshwater stressors as well as their human and ecological impacts is still opaque. This Ph.D. thesis contributes novel GIS and SS tools as well as adapts and advances available spatial models and integrates them with ecological models to enable large scale human and ecological impacts identification from freshwater degradation. The main aim was to identify and quantify the effects of stressors, i.e climate change and trace metals, on the freshwater assemblage structure and trait composition, and human health, respectively, on large scales, i.e. European and Asian freshwater networks. The thesis starts with an introduction to the conceptual framework and objectives (chapter 1). It proceeds with outlining two novel open-source algorithms for quantification of the magnitude and effects of catchment scale stressors (chapter 2). The algorithms, i.e. jointly called ATRIC, automatically select an accumulation threshold for stream network extraction from digital elevation models (DEM) by assuring the highest concordance between DEM-derived and traditionally mapped stream networks. Moreover, they delineate catchments and upstream riparian corridors for given stream sampling points after snapping them to the DEM-derived stream network. ATRIC showed similar or better performance than the available comparable algorithms, and is capable of processing large scale datasets. It enables an integrated and transboundary management of freshwater resources by quantifying the magnitude of effects of catchment scale stressors. Spatially shifting temporal points (SSTP), outlined in chapter 3, estimates pooled within-time series (PTS) variograms by spatializing temporal data points and shifting them. Data were pooled by ensuring consistency of spatial structure and temporal stationarity within a time series, while pooling sufficient number of data points and increasing data density for a reliable variogram estimation. SSTP estimated PTS variograms showed higher precision than the available method. The method enables regional scale stressors quantification by filling spatial data gaps integrating temporal information in data scarce regions. In chapter 4, responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices for five insect orders were compared, their potential for changing distribution pattern under future climate change was evaluated and the most influential climatic aspects were identified (chapter 4). Traits of temperature preference grouping feature and the insect order Ephemeroptera exhibited the strongest response to climate as well as the highest potential for changing distribution pattern, while seasonal radiation and moisture were the most influential climatic aspects that may drive a change in insect distribution pattern. The results contribute to the trait based freshwater monitoring and change prediction. In chapter 5, the concentrations of 10 trace metals in the drinking water sources were predicted and were compared with guideline values. In more than 53% of the total area of Pakistan, inhabited by more than 74 million people, the drinking water was predicted to be at risk from multiple trace metal contamination. The results inform freshwater management by identifying potential hot spots. The last chapter (6) synthesizes the results and provides a comprehensive discussion on the four studies and on their relevance for freshwater resources conservation and management.
Global crop production increased substantially in recent decades due to agricultural intensification and expansion and today agricultural areas occupy about 38% of Earth’s terrestrial surface - the largest use of land on the planet. However, current high-intensity agricultural practices fostered in the context of the Green Revolution led to serious consequences for the global environment. Pesticides, in particular, are highly biologically active substances that can threaten the ecological integrity of aquatic and terrestrial ecosystems. Although the global pesticide use increases steadily, our field-data based knowledge regarding exposure of non-target ecosystems such as surface waters is very restricted. Available studies have by now been limited to spatially restricted geographical areas or had rather specific objectives rendering the extrapolation to larger spatial scales questionable.
Consequently, this thesis evaluated based on four scientific publications the exposure, effects, and regulatory implications of particularly toxic insecticides` concentrations detected in global agricultural surface waters. FOCUS exposure modelling was used to characterise the highly specific insecticide exposure patterns and to analyse the resulting implications for both monitoring and risk assessment (publication I). Based on more than 200,000 scientific database entries, 838 peer-reviewed studies finally included, and more than 2,500 sites in 73 countries, the risks of agricultural insecticides to global surface waters were analysed by means of a comprehensive meta-analysis (publication II). This meta-analysis evaluated whether insecticide field concentrations exceed legally accepted regulatory threshold levels (RTLs) derived from official EU and US pesticide registration documents and, amongst others, how risks depend on insecticide development over time and stringency of environmental regulation. In addition, an in-depth analysis of the current EU pesticide regulations provided insights into the level of protection and field relevance of highly elaborated environmental regulatory risk assessment schemes (publications III and IV).
The results of this thesis show that insecticide surface water exposure is characterized by infrequent and highly transient concentration peaks of high ecotoxicological relevance. We thus argue in publication I that sampling based on regular intervals is inadequate for the detection of insecticide surface water concentrations and that traditional risk assessment concepts based on all insecticide concentrations including non-detects lead to severely biased results and critical underestimations of risks. Based on these considerations, publication II demonstrates that out of 11,300 measured insecticide concentrations (MICs; i.e., those actually detected and quantified), 52.4% (5,915 cases; 68.5%) exceeded the RTL for either water (RTLSW) or sediments. This indicates a substantial risk for the biological integrity of global water resources as additional analyses on pesticide effects in the field clearly evidence that the regional aquatic biodiversity is reduced by approximately 30% at pesticide concentrations equalling the RTLs. In addition, publication II shows that there is a complete lack of scientific monitoring data for ~90% of global cropland and that both the actual insecticide contamination of surface waters and the resulting ecological risks are most likely even greater due to, for example, inadequate sampling methods employed in the studies and the common occurrence of pesticide mixtures. A linear model analysis identified that RTLSW exceedances depend on the catchment size, sampling regime, sampling date, insecticide substance class, and stringency of countries` environmental regulations, as well as on the interactions of these factors. Importantly, the risks are significantly higher for newer-generation insecticides (i.e., pyrethroids) and are high even in countries with stringent environmental regulations. Regarding the latter, an analysis of the EU pesticide regulations revealed critical deficiencies and the lack of protectiveness and field-relevance for current presumed highly elaborated FOCUS exposure assessment (publication IV) and overall risk assessment schemes (publication III). Based on these findings, essential risk assessment amendments are proposed.
In essence, this thesis analyses the agriculture–environment linkages for pesticides at the global scale and it thereby contributes to a new research frontier in global ecotoxicology. The overall findings substantiate that agricultural insecticides are potential key drivers for the global freshwater biodiversity crisis and that the current regulatory risk assessment approaches for highly toxic anthropogenic chemicals fail to protect the global environment. This thesis provides an integrated view on the environmental side effects of global high-intensity agriculture and alerts that beside worldwide improvements to current pesticide regulations and agricultural pesticide application practices, the fundamental reformation of conventional agricultural systems is urgently needed to meet the twin challenges of providing sufficient food for a growing human population without destroying the ecological integrity of global ecosystems essential to human existence.
Aquatic macrophytes can contribute to the retention of organic contaminants in streams, whereas knowledge on the dynamics and the interaction of the determining processes is very limited. The objective of the present study was thus to assess how aquatic macrophytes influence the distribution and the fate of organic contaminants in small vegetated streams. In a first study that was performed in vegetated stream mesocosms, the peak reductions of five compounds were significantly higher in four vegetated stream mesocosms compared to a stream mesocosm without vegetation. Compound specific sorption to macrophytes was determined, the mass retention in the vegetated streams, however, did not explain the relationship between the mitigation of contaminant peaks and macrophyte coverage. A subsequent mesocosm study revealed that the mitigation of peak concentrations in the stream mesocosms was governed by two fundamentally different processes: dispersion and sorption. Again, the reductions of the peak concentrations of three different compounds were in the same order of magnitude in a sparsely and a densely vegetated stream mesocosm, respectively, but higher compared to an unvegetated stream mesocosm. The mitigation of the peak reduction in the sparsely vegetated stream mesocosm was found to be fostered by longitudinal dispersion as a result of the spatial distribution of the macrophytes in the aqueous phase. The peak reduction attributable to longitudinal dispersion was, however, reduced in the densely vegetated stream mesocosm, which was compensated by compound-specific but time-limited and reversible sorption to macrophytes. The observations on the reversibility of sorption processes were subsequently confirmed by laboratory experiments. The experiments revealed that sorption to macrophytes lead to compound specific elimination from the aqueous phase during the presence of transient contaminant peaks in streams. After all, these sorption processes were found to be fully reversible, which results in the release of the primarily adsorbed compounds, once the concentrations in the aqueous phase starts to decrease. Nevertheless, the results of the present thesis demonstrate that the processes governing the mitigation of contaminant loads in streams are fundamentally different to those already described for non-flowing systems. In addition, the present thesis provides knowledge on how the interaction of macrophyte-induced processes in streams contributes to mitigate loads of organic contaminants and the related risk for aquatic environments.
Flowering habitats to enhance biodiversity and pest control services in agricultural landscapes
(2015)
Meeting growing demands for agricultural products requires management solutions that enhance food production, whilst minimizing negative environmental impacts. Conventional agricultural intensification jeopardizes farmland biodiversity and associated ecosystem services through excessive anthropogenic inputs and landscape simplification. Agri-environment schemes (AES) are commonly implemented to mitigate the adverse effects of conventional intensification on biodiversity. However the moderate success of such schemes thus far would strongly benefit from more explicit goals regarding ecosystem service provisioning. Providing key resources to beneficial organisms may improve their abundance, fitness, diversity and the ecosystem services they provide. With targeted habitat management, AES may synergistically enhance biodiversity and agricultural production and thus contribute to ecological intensification. We demonstrate that sown perennial wildflower strips, as implemented in current AES focusing on biodiversity conservation also benefit biological pest control in nearby crops (Chapter 2).
Comparing winter wheat fields adjacent to wildflower strips with fields without wildflower strips we found strongly reduced cereal leaf beetle (Oulema sp.) density and plant damage near wildflower strips. In addition, winter wheat yield was 10 % higher when fields adjoined wildflower strips. This confirms previous assumptions that wildflower strips, known for positive effects on farmland biodiversity, can also enhance ecosystem services such as pest control and the positive correlation of yield with flower abundance and diversity suggests that floral resources are key. Refining sown flower strips for enhanced service provision requires mechanistic understanding of how organisms benefit from floral resources. In climate chamber experiments investigating the impact of single and multiple flowering plant species on fitness components of three key arthropod natural enemies of aphids, we demonstrate that different natural enemies benefit differently from the offered resources (Chapter 3).
Some flower species were hereby more valuable to natural enemies than others overall. Additionally, the mixture with all flowers generally performed better than monocultures, yet with no transgressive overyielding. By explicitly tailoring flower strips to the requirements of key natural enemies of crop pests we aimed to maximise natural enemy mediated pest control in winter wheat (Chapter 4)and potato (Chapter 5) crops.
Respecting the manifold requirements of diverse natural enemies but not pests, in terms of temporal and spatial provisioning of floral, extra floral and structural resources, we designed targeted annual flower strips that can be included in crop rotation to support key arthropods at the place and time they are needed. Indeed, field experiments revealed that cereal leaf beetle density and plant damage in winter wheat can be reduced by 40 % to 61 % and aphid densities in potatoes even by 77 %, if a targeted flower strip is sown into the field. These effects were not restricted to the vicinity of flower strips and, in contrast to fields without flower strip, often prevented action thresholds from being reached. This suggests that targeted flower strips could replace insecticides. All adult natural enemies were enhanced inside targeted flower strips when compared to control strips. Yet, spillover to the field was restricted to key natural enemies such as ground beetles (winter wheat), hoverflies (potato) and lacewings (winter wheat and potato), suggesting their dominant role in biological control. In potatoes, targeted flower strips also enhanced hoverfly species richness in strips and crop, highlighting their additional benefits for diversity.
The present results provide more insights into the mechanisms underlying conservation biological control and highlight the potential of tailored habitat management for ecological intensification.
Change of ecosystems and the associated loss of biodiversity is among the most important environmental issues. Climate change, pollution, and impoundments are considered as major drivers of biodiversity loss. Organism traits are an appealing tool for the assessment of these three stressors, due to their ability to provide mechanistic links between organism responses and stressors, and consistency over wide geographical areas.
Additionally, traits such as feeding habits influence organismal performance and ecosystem processes. Although the response of traits of specific taxonomic groups to stressors is known, little is known about the response of traits of different taxonomic groups to stressors. Additionally, little is known about the effects of small impoundments on stream ecosystem processes, such as leaf litter decomposition, and food webs.
After briefly introducing the theoretical background and objectives of the studies, this thesis begins by synthesizing the responses of traits of different taxonomic groups to climate change and pollution. Based on 558 peer-reviewed studies, the uniformity (i.e., convergence) in trait response across taxonomic groups was evaluated through meta-analysis (Chapter 2). Convergence was primarily limited to traits related to tolerance.
In Chapter 3, the hypothesis that small impoundments would modify leaf litter decomposition rates at the sites located within the vicinity of impoundments, by altering habitat variables and invertebrate functional feeding groups (FFGs) (i.e., shredders), was tested. Leaf litter decomposition rates were significantly reduced at the study sites located immediately upstream (IU) of impoundments, and were significantly related to the abundance of invertebrate shredders.
In Chapter 4, the invertebrate FFGs were used to evaluate the effect of small impoundments on stream ecosystem attributes. The results showed that heterotrophic production was significantly reduced at the sites IU. With regard to food webs, the contribution of methane gas derived carbon to the biomass of chironomid larvae was evaluated through correlation of stable carbon isotope values of chironomid larvae and methane gas concentrations.
The results indicated that the contribution of methane gas derived carbon into stream benthic food web is low. In conclusion, traits are a useful tool in detecting ecological responses to stressors across taxonomic groups, and the effects of small impoundments on stream ecological integrity and food web are limited.