Refine
Year of publication
Document Type
- Doctoral Thesis (93)
- Article (2)
- Bachelor Thesis (1)
- Conference Proceedings (1)
- Habilitation (1)
- Part of Periodical (1)
Keywords
- Pflanzenschutzmittel (9)
- Pestizid (7)
- Landwirtschaft (5)
- ecotoxicology (4)
- Grundwasserfauna (3)
- Insektizid (3)
- Pesticides (3)
- agriculture (3)
- pesticide (3)
- pesticides (3)
Institute
- Fachbereich 7 (99) (remove)
The increase in plastic particles (< 5 mm) in the environment is a global problem, which is in direct correlation to the increasing production quantity and variety. Through direct input (primary) or through the degradation of macroplastics (secondary), particles enter the environmental compartments water and/or soil via conventional material transportation paths. The research and development work on the sustainable removal of microplastic particles (inert organic chemical stressors, IOCS) from wastewater is based on the construction of polymer inclusion compounds. IOCS describe a group of organic chemical molecules, which demonstrate a high level of persistence upon entry in the ecosystem and whose degradation is limited.
Following the principle of Cloud Point Technology, a novel separation technique has been developed which induces particle growth in microplastics and allows easier separation from the water by volume increase according to the state of the art. The concept for the sustainable removal of microplastics from Herbort and Schuhen is based on a three-step synthesis. This concept was further optimized as part of the research and adapted to the criteria of resource efficiency and profitability. The fundamental research is premised on the hypothesis that van der Waals forces with short ranges and localized hydrophobic interactions between precursors and/or material and the IOCS to be connected can induce a fixation through the formation of an inclusion compound with particle growth. Through the addition of silicon-based ecotoxicologically irrelevant coagulation and inclusion units, it is possible to initiate molecular self-organization with the hydrophobic stressors in an aggregation process induced through water. It results in adhesive particle growth around the polymer particles and between particles. Subsequently, the polymer extract can be separated from aquatic media through simple and cost-effective filtration processes (e.g. sand trap, grease trap), due to the 10,000 times larger volume microplastic agglomerates.