Refine
Year of publication
Document Type
- Master's Thesis (187) (remove)
Keywords
- Augmented Reality (3)
- Computersimulation (3)
- Datenschutz (3)
- Internet of Things (3)
- virtual reality (3)
- Beschaffung (2)
- E-Partizipation (2)
- E-participation (2)
- Simulation (2)
- Sport (2)
Institute
- Institut für Computervisualistik (45)
- Fachbereich 4 (34)
- Institut für Management (33)
- Institut für Wirtschafts- und Verwaltungsinformatik (27)
- Institute for Web Science and Technologies (18)
- Institut für Informatik (14)
- Institut für Softwaretechnik (6)
- Fachbereich 1 (1)
- Fachbereich 3 (1)
- Fachbereich 6 (1)
On-screen interactive presentations have got immense popularity in the domain of attentive interfaces recently. These attentive screens adapt their behavior according to the user's visual attention. This thesis aims to introduce an application that would enable these attentive interfaces to change their behavior not just according to the gaze data but also facial features and expressions. The modern era requires new ways of communications and publications for advertisement. These ads need to be more specific according to people's interests, age, and gender. When advertising, it's important to get a reaction from the user but not every user is interested in providing feedback. In such a context more, advance techniques are required that would collect user's feedback effortlessly. The main problem this thesis intends to resolve is, to apply advanced techniques of gaze and face recognition to collect data about user's reactions towards different ads being played on interactive screens. We aim to create an application that enables attentive screens to detect a person's facial features, expressions, and eye gaze. With eye gaze data we can determine the interests and with facial features, age and gender can be specified. All this information will help in optimizing the advertisements.
Blockchain in Healthcare
(2020)
The underlying characteristics of blockchain can facilitate data provenance, data integrity, data security, and data management. It has the potential to transform the healthcare sector. Since the introduction of Bitcoin in the fintech industry, the blcockhain technology has been gaining a lot of traction and its purpose is not just limited to finance. This thesis highlights the inner workings of blockchain technology and its application areas with possible existing solutions. Blockchain could lay the path for a new revolution in conventional healthcare systems. We presented how individual sectors within the healthcare industry could use blockchain and what solution persists. Also, we have presented our own concept to improve the existing paper-based prescription management system which is based on Hyperledger framework. The results of this work suggest that healthcare can benefit from blockchain technology bringing in the new ways patients can be treated.
Since the invention of U-net architecture in 2015, convolutional networks based on its encoder-decoder approach significantly improved results in image analysis challenges. It has been proven that such architectures can also be successfully applied in different domains by winning numerous championships in recent years. Also, the transfer learning technique created an opportunity to push state-of-the-art benchmarks to a higher level. Using this approach is beneficial for the medical domain, as collecting datasets is generally a difficult and expensive process.
In this thesis, we address the task of semantic segmentation with Deep Learning and make three main contributions and release experimental results that have practical value for medical imaging.
First, we evaluate the performance of four neural network architectures on the dataset of the cervical spine MRI scans. Second, we use transfer learning from models trained on the Imagenet dataset and compare it to randomly initialized networks. Third, we evaluate models trained on the bias field corrected and raw MRI data. All code to reproduce results is publicly available online.
Constituent parsing attempts to extract syntactic structure from a sentence. These parsing systems are helpful in many NLP applications such as grammar checking, question answering, and information extraction. This thesis work is about implementing a constituent parser for German language using neural networks. Over the past, recurrent neural networks have been used in building a parser and also many NLP applications. In this, self-attention neural network modules are used intensively to understand sentences effectively. With multilayered self-attention networks, constituent parsing achieves 93.68% F1 score. This is improved even further by using both character and word embeddings as a representation of the input. An F1 score of 94.10% was the best achieved by constituent parser using only the dataset provided. With the help of external datasets such as German Wikipedia, pre-trained ELMo models are used along with self-attention networks achieving 95.87% F1 score.
Thesis is devoted to the topic of challenges and solutions for human resources management (HRM) in international organizations. The aim is to investigate methodological approaches to assessment of HRM challenges and solutions, and to apply them on practice, to develop ways of improvement of HRM of a particular enterprise. The practical research question investigated is “Is the Ongoing Professional Development – Strategic HRM (OPD-SHRM) model a better solution for HRM system of PrJSC “Philip Morris Ukraine”?”
To achieve the aim of this work and to answer the research question, we have studied theoretical approaches to explaining and assessing HRM in section 1, analyzed HRM system of an international enterprise in section 2, and then synthesized theory and practice to find intersection points in section 3.
Research findings indicate that the main challenge of HRM is to balance between individual and organizational interests. Implementation of OPD-SHRM is one of the solutions. Switching focus from satisfaction towards success will bring both tangible and intangible benefits for individuals and organization. In case of PrJSC “Philip Morris Ukraine”, the maximum forecasted increase is 330% in net profit, 350% in labor productivity, and 26% in Employee Development and Engagement Index.
Current political issues are often reflected in social media discussions, gathering politicians and voters on common platforms. As these can affect the public perception of politics, the inner dynamics and backgrounds of such debates are of great scientific interest. This thesis takes user generated messages from an up-to-date dataset of considerable relevance as Time Series, and applies a topic-based analysis of inspiration and agenda setting to it. The Institute for Web Science and Technologies of the University Koblenz-Landau has collected Twitter data generated beforehand by candidates of the European Parliament Election 2019. This work processes and analyzes the dataset for various properties, while focusing on the influence of politicians and media on online debates. An algorithm to cluster tweets into topical threads is introduced. Subsequently, Sequential Association Rules are mined, yielding wide array of potential influence relations between both actors and topics. The elaborated methodology can be configured with different parameters and is extensible in functionality and scope of application.
Unkontrolliert gewachsene Software-Architekturen zeichnen sich i.d.R. durch fehlende oder schlecht nachvollziehbare Strukturen aus. Hierfür können als Gründe beispielsweise mangelhafte Definitionen oder ein langsames Erodieren sein. Dies ist auch unter dem Begriff "Big Ball of Mud" bekannt. Langfristig erhöhen solche architekturellen Mängel nicht nur die Entwicklungskosten, sondern können letztendlich auch Veränderungen vollständig verhindern.
Die Software-Architektur benötigt somit eine kontinuierliche Weiterentwicklung, um solchen Effekten entgegen wirken zu können. Eine gute Software-Architektur unterstützt die Software-Entwicklung und erhöht die Produktivität. Auf der Ebene von Quellcode existieren bereits etablierte Vorgehensweisen zur kontrollierten Verbesserung der Qualität. Im Gegensatz hierzu existieren für Verbesserungen einer Software-Architektur jedoch keine allgemeingültigen Vorgehensweisen, welche unabhängig vom Anwendungsfall angewandt werden können. An diesem Punkt setzt die vorliegende Arbeit an.
Bisherige Arbeiten beschäftigen sich einerseits nur mit Teilpunkten des Problems. Anderseits existieren zwar bereits Vorgehensweisen zum Treffen von Architekturentscheidungen, jedoch agieren diese auf einer stark abstrakten Ebene ohne praktische Beispiele. Diese Arbeit stellt eine leichtgewichtige Vorgehensweise zum gezielten Verbessern einer Software-Architektur vor. Die Vorgehensweise basiert auf einem generischen Problemlösungsprozess. Auf dieser Basis ist ein Prozess zum Lösen von Problemen einer Software-Architektur entwickelt worden. Im Fokus der Arbeit stehen zur Eingrenzung des Umfanges architektonische Probleme aufgrund geforderter Variabilität sowie externer Abhängigkeiten.
Die wissenschaftliche Methodik, welcher der Arbeit zugrunde liegt, agiert im Rahmen der Design Science Research (DSR). Über mehrere Iterationen hinweg wurde eine Vorgehensweise entwickelt, welche sich an Softwareentwickler mit zwei bis drei Jahren Erfahrung und Kenntnissen über Grundlage der Softwareentwicklung und Software-Architektur richtet. Fünf Schritte inkl. Verweise auf aussagekräftige Literatur leiten Anwender anschließend durch den Prozess zur gezielten Verbesserung einer Software-Architektur.
Belief revision is the subarea of knowledge representation which studies the dynamics of epistemic states of an agent. In the classical AGM approach, contraction, as part of the belief revision, deals with the removal of beliefs in knowledge bases. This master's thesis presents the study and the implementation of concept contraction in the Description Logic EL. Concept contraction deals with the following situation. Given two concept C and D, assuming that C is subsumed by D, how can concept C be changed so that it is not subsumed by D anymore, but is as similar as possible to C? This approach of belief change is different from other related work because it deals with contraction in the level of concepts and not T-Boxes and A-Boxes in general. The main contribution of the thesis is the implementation of the concept contraction. The implementation provides insight into the complexity of contraction in EL, which is tractable since the main inference task in EL is also tractable. The implementation consists of the design of five algorithms that are necessary for concept contraction. The algorithms are described, illustrated with examples, and analyzed in terms of time complexity. Furthermore, we propose an new approach for a selection function, adapt for the concept contraction. The selection function uses metadata about the concepts in order to select the best from an input set. The metadata is modeled in a framework that we have designed, based on standard metadata frameworks. As an important part of the concept contraction, the selection function is responsible for selecting the best concepts that are as similar as possible to concept C. Lastly, we have successfully implemented the concept contraction in Python, and the results are promising.