Refine
Year of publication
Document Type
- Doctoral Thesis (93)
- Article (2)
- Bachelor Thesis (1)
- Conference Proceedings (1)
- Habilitation (1)
- Part of Periodical (1)
Keywords
- Pflanzenschutzmittel (9)
- Pestizid (7)
- Landwirtschaft (5)
- ecotoxicology (4)
- Grundwasserfauna (3)
- Insektizid (3)
- Pesticides (3)
- agriculture (3)
- pesticide (3)
- pesticides (3)
Institute
- Fachbereich 7 (99) (remove)
Factors triggering the ecotoxicity of metal-based nanoparticles towards aquatic invertebrates
(2015)
Nanoparticles are produced and used in huge amounts increasing their probability to end up in surface waters. There, they are subject to environmentally driven modification processes. Consequently, aquatic life may be exposed to different nanoparticle agglomerate sizes, while after sedimentation benthic organisms are more likely to be affected.
However, most ecotoxicity studies with nanoparticles exclusively investigated implications of their characteristics (e.g. size) on pelagic organisms, ignoring environmentally modified nanoparticles. Therefore, a systematic assessment of factors triggering the fate and toxicity of nanoparticles under environmentally relevant conditions is needed. The present thesis, therefore, investigates the implications of nanoparticle related factors (i.e., inherent material-properties and nanoparticle characteristics) as well as environmental conditions towards the pelagic living organism Daphnia magna and the benthic species Gammarus fossarum. In detail, inert titanium dioxide (nTiO2) and ion-releasing silver nanoparticles (nAg), both of varying particle characteristics (e.g. initial size), were tested for their toxicity under different environmental conditions (e.g. ultraviolet-light (UV-light)).
The results indicate that the toxicity of nTiO2 and nAg is mainly determined by: their adsorption potential onto biota, and their fate in terms of reactive oxygen species or Ag+ ion release. Thus, inherent material-properties, nanoparticle characteristics and environmental conditions promoting or inhibiting these aspects revealed significant implications in the toxicity of nTiO2 and nAg towards daphnids.
Furthermore, the presence of ambient UV-light, for example, adversely affected gammarids at 0.20 mg nTiO2/L, while under darkness no effects occurred even at 5.00 mg nTiO2/L. Hence, the currently associated risk of nanoparticles might be underestimated if disregarding their interaction with environmental parameters
The increasing application of titanium dioxide nanoparticles (nTiO2) entails an increased risk regarding their release to surface water bodies, where they likely co-occur with other anthropogenic stressors, such as heavy metals. Their co-occurrence may lead to an adsorption of the metal ions onto the particles. These nanoparticles often sediment, due to their agglomeration, and thus pose a risk for pelagic or benthic species. The combined toxicity of nTiO2 and heavy metals is likely influenced by the properties of both stressors (since they may alter their interaction) and by environmental parameters (e.g., organic matter, pH, ionic strength) affecting their fate.
These issues were not yet systematically examined by the recent literature. Therefore, this thesis investigated the influence of nTiO2-products with differing crystalline phase composition on the toxicity of copper (as representative for heavy metals) in presence of different organic matters using the pelagic test organism Daphnia magna.
Moreover, the duration of the stressors` interaction (=aging) likely modulates the combined toxicity. Hence, the influence of nTiO2 on copper toxicity after aging as a function of environmental parameters (i.e., organic matter, pH, ionic strength) was additionally investigated.
Finally, the transferability of the major findings to benthic species was examined using Gammarus fossarum. The present thesis discovered a reduction of the copper toxicity facilitated by nTiO2 for all assessed scenarios, while its magnitude was determined by the surface area and structure of nTiO2, the quantity and quality of organic matter as well as the aging of both stressors. The general copper toxicity reduction by nTiO2 was also transferable to benthic species, despite their potentially increased exposure due to the sedimentation of nTiO2 with adsorbed copper. These observations suggest the application of nTiO2 as remediation agent, but potential side effects (e.g., chronic toxicity, reactive oxygen species formation) require further investigations. Moreover, questions regarding the transferability to other stressors (e.g., different heavy metals, organic chemicals) and the fate of stressors adsorbed to nTiO2 in aquatic ecosystems remain open.
Engineered nanoparticles are emerging pollutants. Their increasing use in commercial products suggests a similar increase of their concentrations in the environment. Studying the fate of engineered colloids in the environment is highly challenging due to the complexity of their possible interactions with the main actors present in aquatic systems. Solution chemistry is one of the most central aspects. In particular, the interactions with dissolved organic matter (DOM) and with natural colloids are still weakly understood.
The aim of this work was to further develop the dedicated analytical methods required for investigating the fate of engineered colloids in environmental media as influenced by DOM. Reviewing the literature on DOM interactions with inorganic colloids revealed that a systematic characterization of both colloids and DOM, although essential, lacks in most studies and that further investigations on the fractionation of DOM on the surface of engineered colloids is needed. Another knowledge gap concerns the effects of DOM on the dynamic structure of colloid agglomerates. For this question, analytical techniques dedicated to the characterization of agglomerates in environmental media at low concentrations are required. Such techniques should remain accurate at low concentrations, be specific, widely matrix independent and free of artefact due to sample preparation. Unfortunately, none of the currently available techniques (microscopy, light scattering based methods, separation techniques etc.) fulfills these requirements.
However, a compromise was found with hydrodynamic chromatography coupled to inductively coupled plasma mass spectrometry (HDC-ICP-MS). This method has the potential to size inorganic particles in complex media in concentration ranges below ppb and is element specific; however, its limitations were not systematically explored. In this work, the potential of this method has been further explored. The simple size separation mechanism ensures a high flexibility of the elution parameters and universal calibration can be accurately applied to particles of different compositions and surface chemistries. The most important limitations of the method are its low size resolution and the effect of the particle shape on the retention factor. The implementation of HDC coupled to single particle ICP-MS (HDC-SP-ICP-MS) offers new possibilities for the recognition of particle shape and hence the differentiation between primary particles and homoagglomerates. Therefore, this coupling technique is highly attractive for monitoring the effects of DOM on the stability of colloids in complex media. The versatility of HDC ICP MS is demonstrated by its successful applications to diverse samples. In particular, it has been used to investigate the stability of citrate stabilized silver colloids in reconstituted natural water in the presence of different types of natural organic matter. These particles were stable for at least one hour independently of the type of DOM used and the pH, in accordance with a coauthored publication addressing the stability of silver colloids in the River Rhine. Direct monitoring of DOM adsorption on colloids was not possible using UV and fluorescence detectors. Preliminary attempts to investigate the adsorption mechanism of humic acids on silver colloids using fluorescence spectroscopy suggest that fluorescent molecules are not adsorbed on silver particles. Several solutions for overcoming the encountered difficulties in the analysis of DOM interactions are proposed and the numerous perspectives offered by further developments and applications of HDC-(SP)-ICP-MS in environmental sciences are discussed in detail.
The intention of this thesis was to characterise the effect of naturally occurring multivalent cations like Calcium and Aluminium on the structure of Soil Organic Matter (SOM) as well as on the sorption behaviour of SOM for heavy metals such as lead.
The first part of this thesis describes the results of experiments in which the Al and Ca cation content was changed for various samples originated from soils and peats of different regions in Germany. The second part focusses on SOM-metal cation precipitates to study rigidity in dependence of the cation content. In the third part the effects of various cation contents in SOM on the binding strength of Pb cations were characterised by using a cation exchange resin as desorption method.
It was found for soil and peat samples as well as precipitates that matrix rigidity was affected by both type and content of cation. The influence of Ca on rigidity was less pronounced than the influence of Al and of Pb used in the precipitation experiments. For each sample one cation content was identified where matrix rigidity was most pronounced. This specific cation content is below the cation saturation as expected by cation exchange capacity. These findings resulted in a model describing the relation between cation type, content and the degree of networking in SOM. For all treated soil and precipitate samples a step transition like glass transition was observed, determined by the step transition temperature T*. It is known from literature that this type of step transition is due to bridges between water molecules and organic functional groups in SOM. In contrast to the glass transition temperature this thermal event is slowly reversing after days or weeks depending on the re-conformation of the water molecules. Therefore, changes of T* with different cation compositions in the samples are explained by the formation of water-molecule-cation bridges between SOM-functional groups. No influence on desorption kinetics of lead for different cation compositions in soil samples was observed. Therefore it can be assumed that the observed changes of matrix rigidity are highly reversible by changing the water status, pH or putting agitation energy by shaking in there.
The increasing, anthropogenic demand for chemicals has created large environmental problems with repercussions for the health of the environment, especially aquatic ecosystems. As a result, the awareness of the public and decision makers on the risks from chemical pollution has increased over the past half-century, prompting a large number of studies in the field of ecological toxicology (ecotoxicology). However, the majority of ecotoxicological studies are laboratory based, and the few studies extrapolating toxicological effects in the field are limited to local and regional levels. Chemical risk assessment on large spatial scales remains largely unexplored, and therefore, the potential large-scale effects of chemicals may be overlooked.
To answer ecotoxicological questions, multidisciplinary approaches that transcend classical chemical and toxicological concepts are required. For instance, the current models for toxicity predictions - which are mainly based on the prediction of toxicity for a single compound and species - can be expanded to simultaneously predict the toxicity for different species and compounds. This can be done by integrating chemical concepts such as the physicochemical properties of the compounds with evolutionary concepts such as the similarity of species. This thesis introduces new, multidisciplinary tools for chemical risk assessments, and presents for the first time a chemical risk assessment on the continental scale.
After a brief introduction of the main concepts and objectives of the studies, this thesis starts by presenting a new method for assessing the physiological sensitivity of macroinvertebrate species to heavy metals (Chapter 2). To compare the sensitivity of species to different heavy metals, toxicity data were standardized to account for the different laboratory conditions. These rankings were not significantly different for different heavy metals, allowing the aggregation of physiological sensitivity into a single ranking.
Furthermore, the toxicological data for macroinvertebrates were used as input data to develop and validate prediction models for heavy metal toxicity, which are currently lacking for a wide array of species (Chapter 3). Apart from the toxicity data, the phylogenetic information of species (evolutionary relationships among species) and the physicochemical parameters for heavy metals were used. The constructed models had a good explanatory power for the acute sensitivity of species to heavy metals with the majority of the explained variance attributed to phylogeny. Therefore, the integration of evolutionary concepts (relatedness and similarity of species) with the chemical parameters used in ecotoxicology improved prediction models for species lacking experimental toxicity data. The ultimate goal of the prediction models developed in this thesis is to provide accurate predictions of toxicity for a wide range of species and chemicals, which is a crucial prerequisite for conducting chemical risk assessment.
The latter was conducted for the first time on the continental scale (Chapter 4), by making use of a dataset of 4,000 sites distributed throughout 27 European countries and 91 respective river basins. Organic chemicals were likely to exert acute risks for one in seven sites analyzed, while chronic risk was prominent for almost half of the sites. The calculated risks are potentially underestimated by the limited number of chemicals that are routinely analyzed in monitoring programmes, and a series of other uncertainties related with the limit of quantification, the presence of mixtures, or the potential for sublethal effects not covered by direct toxicity.
Furthermore, chemical risk was related to agricultural and urban areas in the upstream catchments. The analysis of ecological data indicated chemical impacts on the ecological status of the river systems; however, it is difficult to discriminate the effects of chemical pollution from other stressors that river systems are exposed to. To test the hypothesis of multiple stressors, and investigate the relative importance of organic toxicants, a dataset for German streams is used in chapter 5. In that study, the risk from abiotic (habitat degradation, organic chemicals, and nutrients enrichment) and biotic stressors (invasive species) was investigated. The results indicated that more than one stressor influenced almost all sites. Stream size and ecoregions influenced the distribution of risks, e.g., the risks for habitat degradation, organic chemicals and invasive species increased with the stream size; whereas organic chemicals and nutrients were more likely to influence lowland streams. In order to successfully mitigate the effects of pollutants in river systems, co-occurrence of stressors has to be considered. Overall, to successfully apply integrated water management strategies, a framework involving multiple environmental stressors on large spatial scales is necessary. Furthermore, to properly address the current research needs in ecotoxicology, a multidisciplinary approach is necessary which integrates fields such as, toxicology, ecology, chemistry and evolutionary biology.
A fundamental understanding of attachment of engineered nanoparticles to environmentalrnsurfaces is essential for the prediction of nanoparticle fate and transport in the environment.
The present work investigates the attachment of non-coated silver nanoparticles and citraterncoated silver nanoparticles to different model surfaces and environmental surfaces in thernpresence and absence of humic acid. Batch sorption experiments were used for this investigation.
The objective of this thesis was to investigate how silver nanoparticles interactrnwith surfaces having different chemical functional groups. The effect of presence of HA, on the particle-surface interactions was also investigated. In the absence of humic acid, nanoparticle-surface interactions or attachment was influencedrnby the chemical nature of the interacting surfaces. On the other hand, in the presence ofrnhumic acid, nanoparticle-surface attachment was influenced by the specific surface area of the sorbent surfaces. The sorption of non-coated silver nanoparticles and citrate coatedrnnanoparticles to all the surfaces was nonlinear and best described by Langmuir isotherm, indicating monolayer sorption of nanoparticles on to the surfaces. This can be explained as due to the blocking effect generated by the particle-particle repulsion. In the presence of humic acid, sorption of nanoparticles to the surfaces was linear. When the humic acid was present in the interacting medium, both the nanoparticles and surfaces were getting coated with humic acid and this masks the chemical functionalities of the surfaces. This leads to the change in particle-surface interactions, in the presence of humic acid. For the silver nanoparticle sorption from an unstable suspension, the sorption isotherms did not follow any classical sorption models, suggesting interplay between aggregation and sorption. Citrate coated silver nanoparticles and humic acid coated silver nanoparticles showed arndepression in sorption compared to the sorption of non-coated silver nanoparticles. In therncase of citrate coated silver nanoparticles the decrease in sorption can be explained by thernmore negative zeta potential of citrate coated nanoparticles compared to non-coated ones. For humic acid coated nanoparticles the sorption depression can be due to the steric hindrance caused by the free humic acid molecules which may coat the sorbent surface or due to the competition for sorption sites between the nanoparticle and free humic acid molecules present in the suspension. Thus nanoparticle surface chemistry is an important factor that determines the attachment of nanoparticles towards surfaces and it makes the characterization of nanoparticle surface an essential step in the study of their fate in the environment.
Another aim of this study was to introduce the potential of chemical force microscopy for nanoparticle surface characterization. With the use of this technique, it was possible to distinguish between bare silver nanoparticles, citrate coated silver nanoparticles, and humic acid coated silver nanoparticles. This was possible by measuring the adhesion forces between the nanoparticles and five different AFM probes having different chemical functionalization.
Field margins are often the only remaining habitats of various wild plant species in agricultural landscapes. However, due to their proximity to agricultural fields, the vegetation of field margins can be affected by agrochemicals applied to the crop fields. The aim of this thesis was to investigate the individual and combined effects of herbicide, insecticide and fertilizer inputs on the plant community of a field margin. Therefore, a 3-year field experiment with a randomized block design including seven treatments (H: herbicide, I: insecticide, F: fertilizer, H+I, F+I, F+H and F+H+I) and one control was conducted on a low-production meadow. Each treatment was replicated 8 times in 8 m x 8 m plots with a distance of 2 m between each plot. The fertilizer rates (25 % of the field rate) and pesticide rates (30 % of the field rate) used for the plot applications were consistent with realistic average input rates (overspray + drift) in the first meter of a field margin directly adjacent to a wheat field.
The study revealed that fertilizer and herbicide misplacements in field margins are major factors that affect the natural plant communities of these habitats. In total, 20 of the 26 abundant species on the study site were significantly affected by the fertilizer and herbicide treatment. The fertilizer promoted plants with high nutrient uptake and decreased the frequencies of small species. The herbicide caused a nearly complete disappearance of three species directly after the first application, whereas sublethal effects (e.g., phytotoxic effects and reduced seed productions of up to 100 %) were observed for the other affected species. However, if field margins are exposed to repeated agrochemical applications over several years, then such sublethal effects (particularly reproduction effects) also reduce the population size of plant species significantly, as observed in this study.
Significant herbicide-fertilizer interaction effects were also detected and could not be extrapolated from individual effects. The fertilizer and herbicide effects became stronger over time, leading to shifts in plant community compositions after three years and to a 15 % lower species diversity than in the control. The insecticide significantly affected the frequencies of two plant species (1 positively and 1 negatively). The results of the experiment suggest that a continuous annual agrochemical application on the study site would cause further plant community shifts and would likely lead to the disappearance of certain affected plants. A clear trend of increasing grass dominance at the expense of flowering herbs was detected. This finding corresponds well with monitoring data from field margins near the study site.
Although herbicide risk assessment aims to protect non-target plants in off-field habitats from adverse effects, reproduction effects and combined effects are currently not considered. Furthermore, no regulations for fertilizer applications next to field margins exist and thus, fertilizer misplacements in field margins are likely to occur and to interact with herbicide effects.
Adaptations of the current risk assessment, a development of risk mitigation measures (e.g., in-field buffers) for the application of herbicides and fertilizers, and general management measures for field margins are needed to restore and conserve plant diversity in field margins in agricultural landscapes.
The adoption of the EU Water Framework Directive (WFD) in 2000 marked the beginning of a new era of European water policy. However, more than a decade later, the majority of European rivers are still failing to meet one of the main objectives of the WFD: the good ecological status. Pesticides are a major stressor for stream ecosystems. This PhD thesis emphasises the need for WFD managers to consider all main agricultural pesticide sources and influencing landscape parameters when setting up River Basin Management Plans and Programmes of Measures. The findings and recommendations of this thesis can help to successfully tackle the risk of pesticide contamination to achieve the WFD objectives.
A total of 663 sites that were situated in the German Federal States of Saxony, Saxony-Anhalt, Thuringia and Hesse were studied (Chapter 3 and 4). In addition to an analysis of the macroinvertebrate data of the governmental WFD monitoring network, a detailed GIS analysis of the main agricultural pesticide sources (arable land and garden allotments as well as wastewater treatment plants (WWTPs)) and landscape elements (riparian buffer strips and forested upstream reaches) was conducted. Based on the results, a screening approach was developed that allows an initial rapid and cost-effective identification of those sites that are potentially affected by pesticide contamination. By using the trait-based bioindicator SPEARpesticides, the insecticidal long-term effects of the WWTP effluents on the structure of the macroinvertebrate community were identified up to at least 1.5 km downstream (in some cases even 3 km) of the WWTPs. The results of the German Saprobic Index revealed that the WWTPs can still be important sources of oxygen-depleting substances. Furthermore, the results indicate that forested upstream reaches and riparian buffer strips at least 5 m in width can be appropriate measures in mitigating the effects and exposure of pesticides.
There are concerns that the future expansion of energy crop cultivation will lead to an increased pesticide contamination of ecosystems in agricultural landscapes. Therefore, the potential of energy crops for pesticide contamination was examined based on an analysis of the development of energy crop cultivation in Germany and a literature search on perennial energy crops (Chapter 5). The results indicate that the future large-scale expansion of energy crop cultivation will not necessarily cause an increase or decrease in the amounts of pesticides that are released into the environment. The potential effects will depend on the future design of the agricultural systems. Instead of creating energy monocultures, annual energy crops should be integrated into the existing food production systems. Financial incentives and further education are needed to encourage the use of sustainable crop rotations, innovative cropping systems and perennial energy crops, which may contribute to crop diversity and generate lower pesticide demands than do intensive farming systems.
Non-Consumptive Effects of Spiders and Ants: Does Fear Matter in Terrestrial Interaction Webs?
(2014)
Most animals suffer from predators. Besides killing prey, predators can affect prey physiology, morphology and behaviour. Spiders are among the most diverse and frequent predators in terrestrial ecosystems. Our behavioural arena experiments revealed that behavioural changes under spider predation risk are relatively scarce among arthropods. Wood crickets (Nemobius sylvestris), in particular, changed their behaviour in response to cues of various spider species. Thereby, more common and relatively larger spider species induced stronger antipredator behaviour in crickets.
Behavioural changes under predation risk are expected to enhance predator avoidance, but they come at a cost. Crickets previously confronted with cues of the nursery web spider (Pisaura mirabilis) were indeed more successful in avoiding predation. Surprisingly, crickets slightly increased food uptake and lost less weight under predation risk, indicating that crickets are able to compensate for short-term cost under predation risk. In a following plant choice experiment, crickets strongly avoided plants bearing spider cues, which in turn reduced the herbivory on the respective plants.
Similar to spiders, ants are ubiquitous predators and can have a strong impact on herbivores, but also on other predators. Juvenile spiders increased their propensity for long-distance dispersal if exposed to ant cues. Thus, spiders use this passive dispersal through the air (ballooning) to avoid ants and colonise new habitats.
In a field experiment, we compared arthropod colonisation between plants bearing cues of the nursery web spider and cue-free plants. We followed herbivory during the experimental period and sampled the arthropod community on the plants. In accordance with the plant choice experiment, herbivory was reduced on plants bearing spider cues. In addition, spider cues led to changes in the arthropod community: smaller spiders and black garden ants (Lasius niger) avoided plants bearing spider cues. In contrast, common red ants (Myrmica rubra) increased the recruitment of workers, possibly to protect their aphids.
Although behavioural changes were relatively rare on filter papers bearing spider cues, more natural experimental setups revealed strong and far-reaching effects of predation risk. We further suggest that risk effects influence the spatial distribution of herbivory, rather than reduce overall herbivory that is expected if predators kill herbivores. Consequently, the relative importance of predation and risk effects is crucial for the way predators affect lower trophic levels.