Refine
Year of publication
Document Type
- Doctoral Thesis (93)
- Article (2)
- Bachelor Thesis (1)
- Conference Proceedings (1)
- Habilitation (1)
- Part of Periodical (1)
Keywords
- Pflanzenschutzmittel (9)
- Pestizid (7)
- Landwirtschaft (5)
- ecotoxicology (4)
- Grundwasserfauna (3)
- Insektizid (3)
- Pesticides (3)
- agriculture (3)
- pesticide (3)
- pesticides (3)
Institute
- Fachbereich 7 (99) (remove)
Engineered nanoparticles are emerging pollutants. Their increasing use in commercial products suggests a similar increase of their concentrations in the environment. Studying the fate of engineered colloids in the environment is highly challenging due to the complexity of their possible interactions with the main actors present in aquatic systems. Solution chemistry is one of the most central aspects. In particular, the interactions with dissolved organic matter (DOM) and with natural colloids are still weakly understood.
The aim of this work was to further develop the dedicated analytical methods required for investigating the fate of engineered colloids in environmental media as influenced by DOM. Reviewing the literature on DOM interactions with inorganic colloids revealed that a systematic characterization of both colloids and DOM, although essential, lacks in most studies and that further investigations on the fractionation of DOM on the surface of engineered colloids is needed. Another knowledge gap concerns the effects of DOM on the dynamic structure of colloid agglomerates. For this question, analytical techniques dedicated to the characterization of agglomerates in environmental media at low concentrations are required. Such techniques should remain accurate at low concentrations, be specific, widely matrix independent and free of artefact due to sample preparation. Unfortunately, none of the currently available techniques (microscopy, light scattering based methods, separation techniques etc.) fulfills these requirements.
However, a compromise was found with hydrodynamic chromatography coupled to inductively coupled plasma mass spectrometry (HDC-ICP-MS). This method has the potential to size inorganic particles in complex media in concentration ranges below ppb and is element specific; however, its limitations were not systematically explored. In this work, the potential of this method has been further explored. The simple size separation mechanism ensures a high flexibility of the elution parameters and universal calibration can be accurately applied to particles of different compositions and surface chemistries. The most important limitations of the method are its low size resolution and the effect of the particle shape on the retention factor. The implementation of HDC coupled to single particle ICP-MS (HDC-SP-ICP-MS) offers new possibilities for the recognition of particle shape and hence the differentiation between primary particles and homoagglomerates. Therefore, this coupling technique is highly attractive for monitoring the effects of DOM on the stability of colloids in complex media. The versatility of HDC ICP MS is demonstrated by its successful applications to diverse samples. In particular, it has been used to investigate the stability of citrate stabilized silver colloids in reconstituted natural water in the presence of different types of natural organic matter. These particles were stable for at least one hour independently of the type of DOM used and the pH, in accordance with a coauthored publication addressing the stability of silver colloids in the River Rhine. Direct monitoring of DOM adsorption on colloids was not possible using UV and fluorescence detectors. Preliminary attempts to investigate the adsorption mechanism of humic acids on silver colloids using fluorescence spectroscopy suggest that fluorescent molecules are not adsorbed on silver particles. Several solutions for overcoming the encountered difficulties in the analysis of DOM interactions are proposed and the numerous perspectives offered by further developments and applications of HDC-(SP)-ICP-MS in environmental sciences are discussed in detail.
The intention of this thesis was to characterise the effect of naturally occurring multivalent cations like Calcium and Aluminium on the structure of Soil Organic Matter (SOM) as well as on the sorption behaviour of SOM for heavy metals such as lead.
The first part of this thesis describes the results of experiments in which the Al and Ca cation content was changed for various samples originated from soils and peats of different regions in Germany. The second part focusses on SOM-metal cation precipitates to study rigidity in dependence of the cation content. In the third part the effects of various cation contents in SOM on the binding strength of Pb cations were characterised by using a cation exchange resin as desorption method.
It was found for soil and peat samples as well as precipitates that matrix rigidity was affected by both type and content of cation. The influence of Ca on rigidity was less pronounced than the influence of Al and of Pb used in the precipitation experiments. For each sample one cation content was identified where matrix rigidity was most pronounced. This specific cation content is below the cation saturation as expected by cation exchange capacity. These findings resulted in a model describing the relation between cation type, content and the degree of networking in SOM. For all treated soil and precipitate samples a step transition like glass transition was observed, determined by the step transition temperature T*. It is known from literature that this type of step transition is due to bridges between water molecules and organic functional groups in SOM. In contrast to the glass transition temperature this thermal event is slowly reversing after days or weeks depending on the re-conformation of the water molecules. Therefore, changes of T* with different cation compositions in the samples are explained by the formation of water-molecule-cation bridges between SOM-functional groups. No influence on desorption kinetics of lead for different cation compositions in soil samples was observed. Therefore it can be assumed that the observed changes of matrix rigidity are highly reversible by changing the water status, pH or putting agitation energy by shaking in there.
The increasing, anthropogenic demand for chemicals has created large environmental problems with repercussions for the health of the environment, especially aquatic ecosystems. As a result, the awareness of the public and decision makers on the risks from chemical pollution has increased over the past half-century, prompting a large number of studies in the field of ecological toxicology (ecotoxicology). However, the majority of ecotoxicological studies are laboratory based, and the few studies extrapolating toxicological effects in the field are limited to local and regional levels. Chemical risk assessment on large spatial scales remains largely unexplored, and therefore, the potential large-scale effects of chemicals may be overlooked.
To answer ecotoxicological questions, multidisciplinary approaches that transcend classical chemical and toxicological concepts are required. For instance, the current models for toxicity predictions - which are mainly based on the prediction of toxicity for a single compound and species - can be expanded to simultaneously predict the toxicity for different species and compounds. This can be done by integrating chemical concepts such as the physicochemical properties of the compounds with evolutionary concepts such as the similarity of species. This thesis introduces new, multidisciplinary tools for chemical risk assessments, and presents for the first time a chemical risk assessment on the continental scale.
After a brief introduction of the main concepts and objectives of the studies, this thesis starts by presenting a new method for assessing the physiological sensitivity of macroinvertebrate species to heavy metals (Chapter 2). To compare the sensitivity of species to different heavy metals, toxicity data were standardized to account for the different laboratory conditions. These rankings were not significantly different for different heavy metals, allowing the aggregation of physiological sensitivity into a single ranking.
Furthermore, the toxicological data for macroinvertebrates were used as input data to develop and validate prediction models for heavy metal toxicity, which are currently lacking for a wide array of species (Chapter 3). Apart from the toxicity data, the phylogenetic information of species (evolutionary relationships among species) and the physicochemical parameters for heavy metals were used. The constructed models had a good explanatory power for the acute sensitivity of species to heavy metals with the majority of the explained variance attributed to phylogeny. Therefore, the integration of evolutionary concepts (relatedness and similarity of species) with the chemical parameters used in ecotoxicology improved prediction models for species lacking experimental toxicity data. The ultimate goal of the prediction models developed in this thesis is to provide accurate predictions of toxicity for a wide range of species and chemicals, which is a crucial prerequisite for conducting chemical risk assessment.
The latter was conducted for the first time on the continental scale (Chapter 4), by making use of a dataset of 4,000 sites distributed throughout 27 European countries and 91 respective river basins. Organic chemicals were likely to exert acute risks for one in seven sites analyzed, while chronic risk was prominent for almost half of the sites. The calculated risks are potentially underestimated by the limited number of chemicals that are routinely analyzed in monitoring programmes, and a series of other uncertainties related with the limit of quantification, the presence of mixtures, or the potential for sublethal effects not covered by direct toxicity.
Furthermore, chemical risk was related to agricultural and urban areas in the upstream catchments. The analysis of ecological data indicated chemical impacts on the ecological status of the river systems; however, it is difficult to discriminate the effects of chemical pollution from other stressors that river systems are exposed to. To test the hypothesis of multiple stressors, and investigate the relative importance of organic toxicants, a dataset for German streams is used in chapter 5. In that study, the risk from abiotic (habitat degradation, organic chemicals, and nutrients enrichment) and biotic stressors (invasive species) was investigated. The results indicated that more than one stressor influenced almost all sites. Stream size and ecoregions influenced the distribution of risks, e.g., the risks for habitat degradation, organic chemicals and invasive species increased with the stream size; whereas organic chemicals and nutrients were more likely to influence lowland streams. In order to successfully mitigate the effects of pollutants in river systems, co-occurrence of stressors has to be considered. Overall, to successfully apply integrated water management strategies, a framework involving multiple environmental stressors on large spatial scales is necessary. Furthermore, to properly address the current research needs in ecotoxicology, a multidisciplinary approach is necessary which integrates fields such as, toxicology, ecology, chemistry and evolutionary biology.
A fundamental understanding of attachment of engineered nanoparticles to environmentalrnsurfaces is essential for the prediction of nanoparticle fate and transport in the environment.
The present work investigates the attachment of non-coated silver nanoparticles and citraterncoated silver nanoparticles to different model surfaces and environmental surfaces in thernpresence and absence of humic acid. Batch sorption experiments were used for this investigation.
The objective of this thesis was to investigate how silver nanoparticles interactrnwith surfaces having different chemical functional groups. The effect of presence of HA, on the particle-surface interactions was also investigated. In the absence of humic acid, nanoparticle-surface interactions or attachment was influencedrnby the chemical nature of the interacting surfaces. On the other hand, in the presence ofrnhumic acid, nanoparticle-surface attachment was influenced by the specific surface area of the sorbent surfaces. The sorption of non-coated silver nanoparticles and citrate coatedrnnanoparticles to all the surfaces was nonlinear and best described by Langmuir isotherm, indicating monolayer sorption of nanoparticles on to the surfaces. This can be explained as due to the blocking effect generated by the particle-particle repulsion. In the presence of humic acid, sorption of nanoparticles to the surfaces was linear. When the humic acid was present in the interacting medium, both the nanoparticles and surfaces were getting coated with humic acid and this masks the chemical functionalities of the surfaces. This leads to the change in particle-surface interactions, in the presence of humic acid. For the silver nanoparticle sorption from an unstable suspension, the sorption isotherms did not follow any classical sorption models, suggesting interplay between aggregation and sorption. Citrate coated silver nanoparticles and humic acid coated silver nanoparticles showed arndepression in sorption compared to the sorption of non-coated silver nanoparticles. In therncase of citrate coated silver nanoparticles the decrease in sorption can be explained by thernmore negative zeta potential of citrate coated nanoparticles compared to non-coated ones. For humic acid coated nanoparticles the sorption depression can be due to the steric hindrance caused by the free humic acid molecules which may coat the sorbent surface or due to the competition for sorption sites between the nanoparticle and free humic acid molecules present in the suspension. Thus nanoparticle surface chemistry is an important factor that determines the attachment of nanoparticles towards surfaces and it makes the characterization of nanoparticle surface an essential step in the study of their fate in the environment.
Another aim of this study was to introduce the potential of chemical force microscopy for nanoparticle surface characterization. With the use of this technique, it was possible to distinguish between bare silver nanoparticles, citrate coated silver nanoparticles, and humic acid coated silver nanoparticles. This was possible by measuring the adhesion forces between the nanoparticles and five different AFM probes having different chemical functionalization.
Field margins are often the only remaining habitats of various wild plant species in agricultural landscapes. However, due to their proximity to agricultural fields, the vegetation of field margins can be affected by agrochemicals applied to the crop fields. The aim of this thesis was to investigate the individual and combined effects of herbicide, insecticide and fertilizer inputs on the plant community of a field margin. Therefore, a 3-year field experiment with a randomized block design including seven treatments (H: herbicide, I: insecticide, F: fertilizer, H+I, F+I, F+H and F+H+I) and one control was conducted on a low-production meadow. Each treatment was replicated 8 times in 8 m x 8 m plots with a distance of 2 m between each plot. The fertilizer rates (25 % of the field rate) and pesticide rates (30 % of the field rate) used for the plot applications were consistent with realistic average input rates (overspray + drift) in the first meter of a field margin directly adjacent to a wheat field.
The study revealed that fertilizer and herbicide misplacements in field margins are major factors that affect the natural plant communities of these habitats. In total, 20 of the 26 abundant species on the study site were significantly affected by the fertilizer and herbicide treatment. The fertilizer promoted plants with high nutrient uptake and decreased the frequencies of small species. The herbicide caused a nearly complete disappearance of three species directly after the first application, whereas sublethal effects (e.g., phytotoxic effects and reduced seed productions of up to 100 %) were observed for the other affected species. However, if field margins are exposed to repeated agrochemical applications over several years, then such sublethal effects (particularly reproduction effects) also reduce the population size of plant species significantly, as observed in this study.
Significant herbicide-fertilizer interaction effects were also detected and could not be extrapolated from individual effects. The fertilizer and herbicide effects became stronger over time, leading to shifts in plant community compositions after three years and to a 15 % lower species diversity than in the control. The insecticide significantly affected the frequencies of two plant species (1 positively and 1 negatively). The results of the experiment suggest that a continuous annual agrochemical application on the study site would cause further plant community shifts and would likely lead to the disappearance of certain affected plants. A clear trend of increasing grass dominance at the expense of flowering herbs was detected. This finding corresponds well with monitoring data from field margins near the study site.
Although herbicide risk assessment aims to protect non-target plants in off-field habitats from adverse effects, reproduction effects and combined effects are currently not considered. Furthermore, no regulations for fertilizer applications next to field margins exist and thus, fertilizer misplacements in field margins are likely to occur and to interact with herbicide effects.
Adaptations of the current risk assessment, a development of risk mitigation measures (e.g., in-field buffers) for the application of herbicides and fertilizers, and general management measures for field margins are needed to restore and conserve plant diversity in field margins in agricultural landscapes.
The adoption of the EU Water Framework Directive (WFD) in 2000 marked the beginning of a new era of European water policy. However, more than a decade later, the majority of European rivers are still failing to meet one of the main objectives of the WFD: the good ecological status. Pesticides are a major stressor for stream ecosystems. This PhD thesis emphasises the need for WFD managers to consider all main agricultural pesticide sources and influencing landscape parameters when setting up River Basin Management Plans and Programmes of Measures. The findings and recommendations of this thesis can help to successfully tackle the risk of pesticide contamination to achieve the WFD objectives.
A total of 663 sites that were situated in the German Federal States of Saxony, Saxony-Anhalt, Thuringia and Hesse were studied (Chapter 3 and 4). In addition to an analysis of the macroinvertebrate data of the governmental WFD monitoring network, a detailed GIS analysis of the main agricultural pesticide sources (arable land and garden allotments as well as wastewater treatment plants (WWTPs)) and landscape elements (riparian buffer strips and forested upstream reaches) was conducted. Based on the results, a screening approach was developed that allows an initial rapid and cost-effective identification of those sites that are potentially affected by pesticide contamination. By using the trait-based bioindicator SPEARpesticides, the insecticidal long-term effects of the WWTP effluents on the structure of the macroinvertebrate community were identified up to at least 1.5 km downstream (in some cases even 3 km) of the WWTPs. The results of the German Saprobic Index revealed that the WWTPs can still be important sources of oxygen-depleting substances. Furthermore, the results indicate that forested upstream reaches and riparian buffer strips at least 5 m in width can be appropriate measures in mitigating the effects and exposure of pesticides.
There are concerns that the future expansion of energy crop cultivation will lead to an increased pesticide contamination of ecosystems in agricultural landscapes. Therefore, the potential of energy crops for pesticide contamination was examined based on an analysis of the development of energy crop cultivation in Germany and a literature search on perennial energy crops (Chapter 5). The results indicate that the future large-scale expansion of energy crop cultivation will not necessarily cause an increase or decrease in the amounts of pesticides that are released into the environment. The potential effects will depend on the future design of the agricultural systems. Instead of creating energy monocultures, annual energy crops should be integrated into the existing food production systems. Financial incentives and further education are needed to encourage the use of sustainable crop rotations, innovative cropping systems and perennial energy crops, which may contribute to crop diversity and generate lower pesticide demands than do intensive farming systems.
Non-Consumptive Effects of Spiders and Ants: Does Fear Matter in Terrestrial Interaction Webs?
(2014)
Most animals suffer from predators. Besides killing prey, predators can affect prey physiology, morphology and behaviour. Spiders are among the most diverse and frequent predators in terrestrial ecosystems. Our behavioural arena experiments revealed that behavioural changes under spider predation risk are relatively scarce among arthropods. Wood crickets (Nemobius sylvestris), in particular, changed their behaviour in response to cues of various spider species. Thereby, more common and relatively larger spider species induced stronger antipredator behaviour in crickets.
Behavioural changes under predation risk are expected to enhance predator avoidance, but they come at a cost. Crickets previously confronted with cues of the nursery web spider (Pisaura mirabilis) were indeed more successful in avoiding predation. Surprisingly, crickets slightly increased food uptake and lost less weight under predation risk, indicating that crickets are able to compensate for short-term cost under predation risk. In a following plant choice experiment, crickets strongly avoided plants bearing spider cues, which in turn reduced the herbivory on the respective plants.
Similar to spiders, ants are ubiquitous predators and can have a strong impact on herbivores, but also on other predators. Juvenile spiders increased their propensity for long-distance dispersal if exposed to ant cues. Thus, spiders use this passive dispersal through the air (ballooning) to avoid ants and colonise new habitats.
In a field experiment, we compared arthropod colonisation between plants bearing cues of the nursery web spider and cue-free plants. We followed herbivory during the experimental period and sampled the arthropod community on the plants. In accordance with the plant choice experiment, herbivory was reduced on plants bearing spider cues. In addition, spider cues led to changes in the arthropod community: smaller spiders and black garden ants (Lasius niger) avoided plants bearing spider cues. In contrast, common red ants (Myrmica rubra) increased the recruitment of workers, possibly to protect their aphids.
Although behavioural changes were relatively rare on filter papers bearing spider cues, more natural experimental setups revealed strong and far-reaching effects of predation risk. We further suggest that risk effects influence the spatial distribution of herbivory, rather than reduce overall herbivory that is expected if predators kill herbivores. Consequently, the relative importance of predation and risk effects is crucial for the way predators affect lower trophic levels.
Biodiversity is not only threatened by habitat loss, climate change and pollution, but also by invasive species. The impact of introduced species is immense and causes substantial ecological and economical costs worldwide. With the start of domestications of the African wildcat (Felis lybica) in the Near East, the transport of house cats (Felis catus) around the world as a commensal and domesticate began. The general aim of my thesis was to investigate the impact of invasive feral cats on native species as well as underlying population genetic structures, diversity and phylogeography. This was studied in the context of the demographic history in Australia and Hawai'i. My studies confirmed that the main introductions of cats to Australia began in the 19th century via ships of European settlers, traders and workers. Similarly, I was able to confirm cat introductions to Hawai'i by European traders and explorers; which has to the present a devastating effect on Hawaiian endemic species. Likewise, cats are widespread across Australia, can be found on most islands and are recognized as one of the major threats to Australian native species. A selective feeding behaviour by invasive predators was found in one of my studies. This study additionally gives an indication for possible population recovery of small Western Australianrnvertebrate species after predator removal. Advancement and the combination of various management techniques allow, if adequately funded, a more efficient planning and implementation of eradication campaigns. Population genetic approaches are able to give insights into population genetic structure, diversity and kinship, thereby enabling management campaigns to be more cost effective and successful. No pattern of isolation by distance between populations of Hawai"i and Australia indicated that trade routes, such as the "Golden Round" of the maritime fur trade, facilitated a link between far off global cat populations. Multiple introductions to Australia and intermixing with domestic breed cats resulted in feral cat populations which showrnno signs of reduced genetic variability. My studies also revealed the advantages of bioproxies in combination with phylogeography, which enable the inference and reconstruction of introduction routes, history and origin of invasive species. Genetic signals of historically introduced genotypesrnare still discernible on islands with low number of introductions over time and thereby low intermixing with domestic fancy breeds. Feral cats' adaptability as an invader was reconfirmed and possible underlying genetic mechanisms enabling their success as a global invader ("global supercat") are discussed. Research into the feralisation process of cats will provide new information regarding the domestication of cats, the genetic basis of feralisation and allow additional insights into cats" adaptive potential.
By the work presented in this thesis, the CH4 emissions of the River Saar were quantified in space and time continuously and all relevant processes leading to the observed pattern were identified. The direct comparison between reservoir zones and free-flowing intermediate reaches revealed, that the reservoir zones are CH4 emission hot spots and emitted over 90% of the total CH4. On average, the reservoir zones emitted over 80 times more CH4 per square meter than the intermediate reaches between dams (0.23 vs. 19.7 mol CH4 m-2 d-1). The high emission rates measured in the reservoir zones fall into the range of emissions observed in tropical reservoirs. The main reason for this is the accumulation of thick organic rich sediments and we showed that the net sedimentation rate is an excellent proxy for estimating ebullitive emissions. Within the hot spot zones, the ebullitive flux enhanced also the diffusive surface emissions as well as the degassing emissions at dams.
To resolve the high temporal variability, we developed an autonomous instrument for continuous measurements of the ebullition rate over long periods (> 4 weeks). With this instrument we could quantify the variability and identify the relevant trigger mechanisms. At the Saar, ship-lock induces surges and ship waves were responsible for over 85% of all large ebullition events. This dataset was also used to determine the error associated with short sampling periods and we found that with sampling periods of 24 hours as used in other studies, the ebullition rates were systematically underestimated by ~50%. Measuring the temporal variability enabled us to build up a conceptual framework for estimating the temporal pattern of ebullition in other aquatic systems. With respect to the contribution of freshwater systems to the global CH4 emissions, hot spot emission sites in impounded rivers have the potential to increase the current global estimate by up to 7%.
Engineered nanoparticles (ENP) are widely used in different industrial fields and products. In the last years, the risk potential for the release of ENP in the environment has increased as never before. ENP are expected to pass the wastewater-river-topsoil-groundwater pathway. In the terrestrial and aquatic environment ENP can undergo aging and transformation processes which can influence fate, transport and toxicological effects to different living organisms.
The scope of this workshop is to gather researchers, scientists, experts and specialists from nanoparticle and colloid science, soil and environmental chemistry, ecotoxicology or neighbouring disciplines to discuss the latest results and findings in the field of aging, fate, transport and toxicological effects of nanoparticles in the environment.
Larvae of Cx.pipiens coocurred with Cladocera, but the latter established delayed in time. Biotope structure influenced time of species occurrence with ponds at reed-covered wetlands favouring crustacean development, while ponds at grassland biotopes favoured colonization by mosquito larvae. The mechanisms driving the negative effect of crustaceans on mosquito larvae were investigated within an experiment under artificial conditions. Crustacean communities were found to reduce both oviposition and larval development of Cx.pipiens. Crustacean communities of high taxa diversity, including both predatory and competing crustaceans, were more effective compared with crustacean communities dominated by single taxa. Presence of crustacean communities characterised by high taxa diversity increased the sensitivity of Cx.pipiens larvae towards Bti and prolonged the time of recolonization. In a final step the combined approach, using Bti and crustaceans, was evaluated under field conditions. The joint application of Bti and crustaceans was found to reduce mosquito larval populations over the whole observation period, while single application of Bti caused only short-term reduction of mosquito larvae. Single application of crustaceans had no significant effect, because high abundances of prior established mosquito larvae impeded propagation of crustaceans. At combined treatment, mosquito larvae were reduced by Bti application and hence crustaceans were able to proliferate without disturbance by interspecific competition. In conclusion, natural competitors were found to have a strong negative impact on mosquito larval populations. However, a time span of about 2 weeks has to be bridged, before crustacean communities reached a level sufficient for mosquito control. Results of a combined approach, complementing the short-term effect of the biological insecticide Bti with the long-term effect of crustaceans, were promising. Using natural competitors within an integrated control strategy could be an important tool for an effective, environmentally friendly and sustainable mosquito management.
Mathematical Modelling of GIS Tailored GUI Design with the Application of Spatial Fuzzy Logic
(2014)
This PhD thesis is situated within the framework of the Research-Group Learning and Neurosciences (ReGLaN)-Health and Logistics project. The goal of this project is the optimisation of health service delivery in the rural areas of South Africa. Cooperation takes place between ReGLaN-Health and Logistics and the South African Council for Scientific and Industrial Research (CSIR) Meraka Institute, with Prof Dr Dr Marlien Herselman of Pretoria, South Africa, as the central contact person. This thesis deals with the mathematical modelling of Geographic Information System (GIS)-tailoredrnGraphical User Interface (GUI) design with the application of spatial fuzzy logic. This thesis considers the mathematical visualisation of risk and resource maps for epidemiological issues using GIS and adaptive GUI design for an Open Source (OS) application for digital devices. The intention ofrnthis thesis is to provide spatial decision support tailored to different user groups. In order for the GUI elements to be evaluated and initialised, empirical teaching-learning-research on dealing with geomedia and GUI elements was conducted.
The transport of pesticides from agricultural land into surface waters via diffuse entry pathways such as runoff is a major threat to aquatic ecosystems and their communities. Although certain risk mitigation measures are currently stipulated during pesticide product authorisation, further approaches might be needed to manage hot spots of pesticide exposure. Such a management is, for example, required by the European Union- directive for the sustainable use pesticides (2009/128/EC).
The need for mitigation measures was investigated within the present thesis at stream sites draining an arable and a vineyard region in Germany by characterising pesticide exposure following edge-of-field runoff and (expected) effects on the aquatic macroinvertebrates. The results of these field studies showed, that streams in both regions were exposed to pesticide concentrations suggesting effects on the macroinvertebrate community. In the arable region the observed toxicity was mainly attributed to the insecticides lambda-cyhalothrin (in the water-phase samples) and alpha-cypermethrin (in the suspended particle samples), whereas in the vineyard region fungicides were most important. Furthermore stream water and suspended particles sampled in the vineyard region showed critical copper concentrations, which might cause ecotoxicological effects in the field. In addition to pesticide exposure, in the arable region also the effects on aquatic macroinvertebrates were assessed in the field. Generally, invertebrate fauna was dominated by pesticide-tolerant species, which suggested a high pesticide exposure at almost all sites. The elevated levels of suspended particle contamination in terms of maximum toxic units per sample (logTUMax > -2) reflect also this result. At two sites that received high aqueous-phase entries of the insecticide lambda-cyhalothrin (logTUMax > -0.6), the abundance and number of sensitive species (indicated by the SPEcies At Risk index) decreased during the pesticide application period. In contrast, at sites characterised by low water-phase toxicity (logTUMax < -3.5), no acute significant negative effects on macroinvertebrates were observed. In conclusion these data showed that in both regions the implementation of risk mitigation measures is needed to protect the aquatic communities.
To mitigate runoff-related pesticide entries, riparian buffer strips are often recommended. However, the mitigating influence with increasing buffer strip width could not be demonstrated for riparian buffers which were already present in the arable and vineyard region. This result was attributed in the vineyard region to the high number of paved field paths associated with artificial erosion rills, which concentrate and rapidly transport receiving edge-of-field runoff in stream direction. Consequently the pesticide reduction efficiency of buffer strips is considerably reduced. We assumed that a similar process occurred in the arable region, due to a high number of erosion rills, which complicate a laminar sheet flow of edge-of-field runoff through the riparian buffer strip. Additionally also the presence of ephemeral drainage ditches, which led surface runoff from the agricultural fields to the streams may have contributed to observed pesticide entries despite wide buffers.
Effective risk mitigation measures should address these identified most important input pathways in the study areas. As possible measures the implementation of grassed field paths and vegetated ditches or wetlands were suggested. In general also the improvement of currently present riparian buffer strips regarding their efficiency to reduce pesticide runoff entries should be taken into account. In conclusion the results of the field studies underline the importance that risk mitigation measures are identified specifically for the respective pollution situation in stream catchments. To facilitate this process, a user guide was developed within the present thesis for identifying appropriate mitigation measures at high-risk sites. Based on a survey of exposure relevant landscape parameter a set of risk mitigation measures is suggested that focus on the specific pollution situation. Currently the guide includes 12 landscape- and six application-related measures and presents an overview of these measures" efficiency to reduce pesticide entries via runoff and spray drift, their feasibility and expected acceptability to farmers. Based on this information the user can finally choose the mitigation measures for implementation. The present guide promotes the practical implementation of appropriate risk mitigation measures in pesticide-polluted streams, and thus the protection of aquatic stream communities against pesticide entries.
Structure of soil organic matter (SOM) is a hot topic of discussion among scientific community for several decades. The mostly discussed models, among many, are polymer model and supramolecular model. While the former considers SOM as macromolecules consisting of amorphous and crystalline domains, the latter explains SOM as a physicochemical entity dominated by weak hydrophobic and H-bond interactions in the secondary level, which holds individual molecules of primary structure together. The weak forces in secondary level impart characteristic mobility of SOM. Very important consequence of this multidimensional formulation is that physicochemical structure plays a crucial role in most biogeochemical functions of SOM, apart from the chemical composition. Recently introduced concept of cation and water molecule mediated bridges between OM molecular segments (CaB and WaMB, respectively) evolved from physicochemical understanding of SOM structure. Even though several indirect evidences were produced for CaB and WaMB during last years, no clear-cut understanding of these processes has been achieved yet. Experimental difficulty due to overlapping effects of equally important CaB-governing parameters such a pH and competing cations raises huge challenge in investigating CaB-related influences. This thesis, therefore, aims to validate an experimental set-up for inducing CaB within OM structures and assessing it from various chemical and physicochemical aspects.
The method involved removal of omnipresent cations and adjustment of pH before cation addition. This helped to separate pH effects and cation effects. Based on results obtained on two different types of organic matter, it can be deduced that multivalent cations can cross-link SOM, given that functional group density of the SOM material is enough for the functional groups to be arranged in sufficient spatial proximity to each other. Physicochemical structural reorganisation during aging causes formation of more and/or stronger CaB and WaMB. As for inducing CaB directly after cation treatment, cationic size and valency were found determinant also for aging effect. A strongly cross-linked system in the beginning is less vulnerable to structural changes and undergoes aging with lower intensity, than an initially weakly cross-linked system. Responsible for the structural changes is, the inherent mobility of SOM within its physicochemical assemblage. Thus the information on structural requirement of CaB and its consequences on OM matrix rigidity will help to obtain insight into the physicochemical SOM structure. Additionally, organic matter quality (assessed by thermal analysis) and pore structure of SOM formed in a set of artificial soils showed that mineral materials are important for the chemical nature of SOM molecules, but not for the physical structure of organo-mineral associations, at least after several months of SOM development.
Furthermore, nanothermal analysis using atomic force microscopy (AFM-nTA) was implemented in soils for the first time to reveal nanoscale thermal properties and their spatial distribution in nano- and micrometer scales. This helped to identify physicochemical processes, such as disruption of WaMB, in low-organic soils, in which bulk methods fail due to their low sensitivity. Further, various types of materials constituting in soils were distinguished with high resolution by advanced application of the method, in combination with other AFM parameters. Attempts were done to identify various materials, with the usage of defined test materials. Above all, the method is potent to reveal microspatial heterogeneity on sample surfaces, which could help understanding process-relevant hotspots, for example.
This thesis thus contributes to the scientific understanding on physicochemical structural dynamics via cross-linking by cations and via nanoscale thermal properties. Direct investigation on CaB demonstrated here will potentially help making a big leap in knowledge about the interaction. The observed aging effects add well to the understanding of supramolecular consideration of SOM. By introducing nanothermal analysis to the field of soil science, it is made possible to face the problem of heterogeneity and spatial distribution of thermal characteristics. Another important achievement of AFM-nTA is that it can be used to detect physicochemical processes, which are of low intensity.
Studies on the toxicity of chemical mixtures find that components at levels below no-observed-effect concentrations (NOECs) may cause toxicity resulting from the combined effects of mixed chemicals. However, chemical risk assessment frequently focuses on individual chemical substances, although most living organisms are substantially exposed to chemical mixtures rather than single substances. The concepts of additive toxicity, concentration addition (CA), and independent action (IA) models are often applied to predict the mixture toxicity of similarly and dissimilarly acting chemicals, respectively. However, living organisms and the environment may be exposed to both types of chemicals at the same time and location. In addition, experimental acquisition of toxicity data for every conceivable mixture is unfeasible since the number of chemical combinations is extremely large. Therefore, an integrated model to predict mixture toxicity on the basis of single mixture components having various modes of toxic action (MoAs) needs to be developed. The objectives of the present study were to analyze the challenges in predicting mixture toxicity in the environment, and to develop integrated models that overcome the limitations of the existing prediction models for estimating the toxicity of non-interactive mixtures through computational models. For these goals, four sub-topics were generated in this study. Firstly, applicable domains and limitations of existing integrated models were analyzed and grouped into three kinds of categories in this study. There are current approaches used to assess mixture toxicity; however, there is a need for a new research concept to overcome challenges associated with such approaches, which recent studies have addressed. These approaches are discussed with particular emphasis on those studies involved in computational approaches to predict the toxicity of chemical mixtures based on the toxicological data of individual chemicals. Secondly, through a case study and a computational simulation, it was found that the Key Critical Component (KCC) and Composite Reciprocal (CR) methods (as described in the European Union (EU) draft technical guidance notes for calculating the Predicted No Effect Concentration (PNEC) and Derived No Effect Level (DNEL) of mixtures) could derive significantly different results. As the third and fourth sub-topics of this study, the following two integrated addition models were developed and successfully applied to overcome the inherent limitations of the CA and IA models, which could be theoretically used for either similarly or dissimilarly acting chemicals: i) a Partial Least Squares-Based Integrated Addition Model (PLS-IAM), and, ii) a Quantitative Structure-Activity Relationship-Based Two-Stage Prediction (QSAR-TSP) model. In this study, it was shown that the PLS-IAM might be useful to estimate mixture toxicity when the toxicity data of similar mixtures having the same compositions were available. In the case of the QSAR-TSP model, it showed the potential to overcome the critical limitation of the conventional TSP model, which requires knowledge of the MoAs for all chemicals. Therefore, this study presented good potential for the advanced integrated models (e.g., PLS-IAM and QSAR-TSP), while considering various non-interactive constituents that have different MoAs in order to increase the reliance of conventional models and simplify the procedure for risk assessment of mixtures.
Chemical plant protection is an essential element in integrated pest management and hence, in current crop production. The use of Plant Protection Products (PPPs) potentially involves ecological risk. This risk has to be characterised, assessed and managed.
For the coming years, an increasing need for agricultural products is expected. At the same time, preserving our natural resources and biodiversity per se is of equally fundamental importance. The relationship of our economic success and cultural progress to protecting the environment has been made plain in the Ecosystem Service concept. These distinct 'services' provide the foundation for defining ecological protection goals (Specific Protection Goals, SPGs) which can serve in the development of methods for ecological risk characterisation, assessment and management.
Ecological risk management (RM) of PPPs is a comprehensive process that includes different aspects and levels. RM is an implicit part of tiered risk assessment (RA) schemes and scenarios, yet RM also explicitly occurs as risk mitigation measures. At higher decision levels, RM takes further risks, besides ecological risk, into account (e.g., economic). Therefore, ecological risk characterisation can include RM (mitigation measures) and can be part of higher level RM decision-making in a broader Ecosystem Service context.
The aim of this thesis is to contribute to improved quantification of ecological risk as a basis for RA and RM. The initial general objective had been entitled as "… to estimate the spatial and temporal extent of exposure and effects…" and was found to be closely related to forthcoming SPGs with their defined 'Risk Dimension'.
An initial exploration of the regulatory framework of ecological RA and RM of PPPs and their use, carried out in the present thesis, emphasised the value of risk characterisation at landscape-scale. The landscape-scale provides the necessary and sufficient context, including abiotic and biotic processes, their interaction at different scales, as well as human activities. In particular, spatially (and temporally) explicit landscape-scale risk characterisation and RA can provide a direct basis for PPP-specific or generic RM. From the general need for tiered landscape-scale context in risk characterisation, specific requirements relevant to a landscape-scale model were developed in the present thesis, guided by the key objective of improved ecological risk quantification. In principle, for an adverse effect (Impact) to happen requires a sensitive species and life stage to co-occur with a significant exposure extent in space and time. Therefore, the quantification of the Probability of an Impact occurring is the basic requirement of the model. In a landscape-scale context, this means assessing the spatiotemporal distribution of species sensitivity and their potential exposure to the chemical.
The core functionality of the model should reflect the main problem structures in ecological risk characterisation, RA and RM, with particular relationship to SPGs, while being adaptable to specific RA problems. This resulted in the development of a modelling framework (Xplicit-Framework), realised in the present thesis. The Xplicit-Framework provides the core functionality for spatiotemporally explicit and probabilistic risk characterisation, together with interfaces to external models and services which are linked to the framework using specific adaptors (Associated-Models, e.g., exposure, eFate and effect models, or geodata services). From the Xplicit-Framework, and using Associated-Models, specific models are derived, adapted to RA problems (Xplicit-Models).
Xplicit-Models are capable of propagating variability (and uncertainty) of real-world agricultural and environmental conditions to exposure and effects using Monte Carlo methods and, hence, to introduce landscape-scale context to risk characterisation. Scale-dependencies play a key role in landscape-scale processes and were taken into account, e.g., in defining and sampling Probability Density Functions (PDFs). Likewise, evaluation of model outcome for risk characterisation is done at ecologically meaningful scales.
Xplicit-Models can be designed to explicitly address risk dimensions of SPGs. Their definition depends on the RA problem and tier. Thus, the Xplicit approach allows for stepwise introduction of landscape-scale context (factors and processes), e.g., starting at the definitions of current standard RA (lower-tier) levels by centring on a specific PPP use, while introducing real-world landscape factors driving risk. With its generic and modular design, the Xplicit-Framework can also be employed by taking an ecological entity-centric perspective. As the predictive power of landscape-scale risk characterisation increases, it is possible that Xplicit-Models become part of an explicit Ecosystem Services-oriented RM (e.g., cost/benefit level).
This habilitation thesis deals with the effects of toxicants on freshwater ecosystems and considers different toxicant classes (pesticides, organic toxicants, salinity) and biotic endpoints (taxonomic community structure, trait community structure, ecosystem functions).
The thesis comprises 12 peer-reviewed international publications on these topics. All of the related studies rely on mesocosm or field investigations, or the analysis of field biomonitoring or chemical monitoring data. Publications I and II are devoted to passive sampling of a neonicotinoid insecticide and polycyclic aromatic hydrocarbons (PAHs), respectively. They show that biofouling and a diffusion-limiting membrane can reduce the sampling rate of the pulsed insecticide exposure and that receiving phases of different thicknesses can be used to assess the kinetic regime during field deployment of passive samplers. Publications III to VI mainly focus on trait-based approaches to reveal toxicant effects on invertebrates in streams. An overview on the framework and several applications of a trait-based approach to detect effects of pesticides (SPEARpesticides index) are given in publication III. Publication IV describes the development of a trait database for South-East Australian stream invertebrates and its successful application in the adaptation of SPEARpesticides as well as the development of a salinity index. Moreover, a conceptual model for the future development of trait-based biomonitoring indices is proposed. Publication V reports a mesocom study on the effects of a neonicotinoid insecticide on field-realistic invertebrate communities. The insecticide had long-term effects on the invertebrate communities, which were only detected when grouping the taxa according to their life-history traits. A comprehensive field study employing different pesticide sampling methods including passive sampling and biomonitoring of the invertebrate and microbial communities is presented in publication VI. The study did not find pesticide-induced changes in the microbial communities, but detected adverse effects of current-use pesticides on the invertebrate communities using the trait-based SPEARpesticides index. This index is also applied in a meta-analysis on thresholds for the effects of pesticides on invertebrate communities in publication VII. It is shown that there is a similar dose-response relationship between SPEARpesticides and pesticide toxicity over different biogeographical regions and continents. In addition, the thresholds for effects of pesticides are lower than derived from most mesocosm studies and than considered in regulatory pesticide risk assessment. The publications VIII to X use statistical data analysis approaches to examine effects of toxicants in freshwater ecosystems. Using governmental monitoring data on 331 organic toxicants monitored monthly in 4 rivers over 11 years, publication VIII finds that organic toxicants frequently occurred in concentrations envisaging acute toxic effects on invertebrates and algae even in large rivers. Insecticides and herbicides were the chemical groups mainly contributing to the ecotoxicological risk. Publication IX introduces a novel statistical method based on a similarity index to estimate thresholds for the effects of toxicants or other stressors on ecological communities. The application of the method for deriving thresholds for salinity, heavy metals and pesticides in streams is presented in three case studies. Publication X tackles the question of interactive effects between different toxicants using data from a field study on stream invertebrates in 24 sites of South-East Australia. Both salinity and pesticides exhibited statistically significant effects on the invertebrate communities, but no interaction between the stressors was found. Moreover, salinity acted on a higher taxonomical level than pesticides suggesting evolutionary adaptation of stream invertebrates compared to pesticide stress. Publications XI and XII concentrate on the effects of toxicants on biodiversity, ecosystem functions and ecosystem services, with publication XI summarising different studies related to the ecological risk assessment for these endpoints. A field study on the effects of pesticides and salinity on the ecosystem functions of allochthonous organic matter decomposition, gross primary production and ecosystem respiration is presented in publication XII. Both pesticides and salinity reduced the breakdown of allochthonous organic matter, whereas no effects on the other ecosystem functions were detected. A chapter following these publications synoptically discusses all studies of this habilitation thesis and draws general conclusions. It is stressed that in order to advance the understanding of effects of toxicants on freshwater ecosystems more ecological realism is needed in ecotoxicological approaches and that the spatiotemporal extent of toxicant effects needs more scrutiny.
The polysaccharide hydration phenomenon is nowadays the subject of intense research. The interaction of native and modified polysaccharides and polysaccharides-based bioconjugates with water has an important influence on their functional behaviour. Notwithstanding that the hydration phenomenon has been studied for decades, there is still a lack of awareness about the influence of hydration water on the polysaccharide´s structure and consequences for industrial or medicinal applications. The hydration of polysaccharides is often described by the existence of water layers differing in their physical properties depending on the distance from the polysaccharide. Using the differential scanning calorimetry (DSC) such water layers were categorized according their properties upon cooling in hyaluronan (HYA, sodium salt of ß-1,4-linked units of ß-1,3-linked D-glucuronic acid and N-acetyl-D-glucosamine), a model polysaccharide in the present work. The amount of non-freezing water, i.e. water in close proximity of HYA chain which does not freeze et all, was determined around 0.74gH2O/gHYA for HYA with molecular weight from 100 to 740kDa and 0.84gH2O/gHYA for molecular weight of 1390kDa. The amount of freezing-bound water, the water pool which is affected by presence of HYA but freezes, was determined in the range from 0.74 to 2gH2O/gHYA. Above this value only non-freezing and bulk water are present since melting enthalpy measured above this concentration reached the same value as for pure water. Since this approach suffers from several experimental problems, a new approach, based on the evaporation enthalpy determination, was suggested. The analysis of the evaporation enthalpies revealed an additional process associated with apparent energy release taking part below the water content of 0.34gH2O/gHYA. Existence of this phenomenon was observed also for protonated form of HYA. The existence of energy compensating process was confirmed with the Kissinger-Akahira-Sunose method which allowed determination of actual water evaporation/desorption enthalpies in all stages of the evaporation process. In fact, the apparent evaporation enthalpy value increased until water content of 0.34gH2O/gHYA, and then dropped down to lower values which were, still higher than the value of the pure water evaporation enthalpy. By the use of time domain nuclear magnetic resonance (TD-NMR) technique it was revealed that this phenomenon is the plasticisation of HYA.
Further, it was revealed that the non-freezing water determined by the use of DSC consists of two water fractions, i.e. 15% of water structurally integrated, interacting directly with polar sites, and 85% of water structurally restricted, embedded in-between the HYA chains. The occurrence of plasticisation concentration close to equilibrium moisture content provided the possibility to influence the HYA physical structure during the drying. In this way three samples of native HYA, dried under various conditions were prepared and their physical properties were analyzed. The samples differed in kinetics of rehydration, plasticisation concentration, glass transitions, and morphology. The properties of water pool were studied in solutions of 10"25mg HYA/mL as well. The fast filed cycling (FFC) NMR relaxometry showed the existence of three water fractions which correlation times spanned from 10"6 to 10"10 seconds, progressively decreasing in dependency on its distance from HYA chain. The formation of a weak and transient intramolecular water bridge between HYA chains was observed. It was shown that, unlike the inorganic electrolytes, polyelectrolytes hydration is a dynamic process which reflects not only the technique used for the analysis, experimental conditions but also the conformation of the polysaccharide and its "thermal" and "hydration" history.
It was demonstrated that some native polysaccharide structures can be easily modified by manipulation of preparation conditions, giving fractions with specific physicochemical properties without necessity of any chemical modification.
The conservation of groundwater ecosystems requires an assessment and evaluation scheme that shows the state of the ecosystem. Consequently, faunal and microbial criteria are required for groundwater monitoring, in addition to physico-chemical analyses. To proof the adequacy of the application of groundwater organisms for the biological assessment of groundwater quality, an extensive sampling collection of various groundwater systems was accomplished between 2002 and 2009 in Germany. Key aspects were the examination of the indicator potential of groundwater communities towards surface-groundwater interactions and anthropogenic impacts, as well as the analysis of stygofaunal distribution patterns, as a base and reference for a faunal assessment scheme of groundwater systems. The sampling design considered local, regional, and biogeographic conditions. To test the indicator potential of groundwater organisms on a local and regional scale, groundwater systems in Nordrhein-Westfalen (NRW) and Baden-Württemberg (BW) were examined. The faunal and microbial data from unconsolidated aquifers (Erftgebiet, NRW) show the sensitivity of groundwater organisms against land use effects, e.g. extensive agriculture. Data analyses revealed positive correlations of organic material (estimated amount of detritus, TOC) and nitrate with faunal abundance, species richness, diversity and the proportions of stygoxene species. Moreover, the bacterial abundance and diversity in the groundwater of the Erftgebiet was high compared to oligotrophic groundwater systems, indicating an effect of surface influence due to agricultural land use. The groundwater colonization in the Alb-Donau-Kreis (BW) was analyzed for regional effects (landscape, type of aquifer, hydrogeology) and local effects (comparing single wells). The results show that the fauna reflects the strength of the hydrological exchange on different spatial scales. Furthermore, the fauna reflects the interaction of regional and local conditions. Accordingly, the diversity and abundance of groundwater organisms was influenced by the high connectivity of the karst and unconsolidated alluvial aquifers, the type of land use, covering layers of soil, the age of groundwater, and the sampling depths. In general, faunal and microbial data of the Alb-Donau-Kreis are characteristic for oligotrophic, oligoalimonic groundwaters. The large scale analyses of stygofaunal distribution patterns revealed significant biogeographical differences of the communities. These community patterns of the groundwater fauna do not coincide with existing classification schemes defined for surface landscapes or freshwater systems. The largest differences between faunal surface and subsurface distribution patterns were found between the groundwater of northern and southern Germany and the foothills of the central mountain ranges - all of them regions shaped by the last ice ages.
In accordance with the faunal data assessed in groundwater, four different stygoregions were defined that are populated by distinct faunal assemblages. These are 1) the "Northern lowlands", 2) the "Central mountain ranges", 3) the "South-western mountain ranges", and 4) the "Southern mountain ranges and northern alps". The study corroborates that stygofaunal and microbial communities are an adequate tool for the qualitative assessment and monitoring of groundwater ecosystems. The best indicators to detect anthropogenic impacts on groundwater ecosystems are the faunal diversity, abundance, the proportions of stygobitic (obligate groundwater species) and stygoxene species (species not obligate for groundwater), and the bacterial abundance. The development of an ecologically based groundwater assessment and management, is crucial for the conservation of our groundwater ecosystems and thus, healthy drinking water. The defintion of "stygoregions" is an important base for the development of an assessment and reference scheme for groundwater ecosystems. The assessment of the ecological state of groundwater systems must be conducted on local scale, because the strength of the local hydrological influence determines the amount of food and oxygen as well as stygoxene animals within the aquifer, and thus shapes the local groundwater communities. Nevertheless, information of the biogeographic and regional conditions is needed as a reference for the type of species and abundances that potentially can occur in certain groundwater systems.