Refine
Year of publication
Document Type
- Doctoral Thesis (93)
- Article (2)
- Bachelor Thesis (1)
- Conference Proceedings (1)
- Habilitation (1)
- Part of Periodical (1)
Keywords
- Pflanzenschutzmittel (9)
- Pestizid (7)
- Landwirtschaft (5)
- ecotoxicology (4)
- Grundwasserfauna (3)
- Insektizid (3)
- Pesticides (3)
- agriculture (3)
- pesticide (3)
- pesticides (3)
Institute
- Fachbereich 7 (99) (remove)
Assessment of bat activity in agricultural environments and the evaluation of the risk of pesticides
(2013)
Although agriculture dominates with around 50% area much of Europe- landscape, there is virtually no information on how bats use this farmed environment for foraging. Consequently, little is known about effective conservation measures to compensate potential negative effects of agrarian management practice on the food availability for bats in this habitat. Moreover, there are currently no specific regulatory requirements to include bats in European Union risk assessments for the registration of pesticides since no information about pesticide exposure on this mammal group is available. To evaluate the potential pesticide exposure of bats via ingestion of contaminated insects, information about bat presence and activity in agricultural habitats is required. In order to examine bat activity on a landscape scale it was necessary to establish a suitable survey method. Contrary to capture methods, telemetry, and direct observations, acoustic surveys of bat activity are a logistically feasible and cost-effective way of obtaining bat activity data. However, concerns regarding the methodological designs of many acoustic surveys are expressed in the scientific literature. The reasons are the failing of addressing temporal and spatial variation in bat activity patterns and the limitations of the suitability of the used acoustic detector systems. By comparing different methods and detector systems it was found that the set up of several stationary calibrated detector systems which automatically trigger the ultrasonic recording has the highest potential to produce reliable, unbiased and comparable data sets on the relative activity of bats.
By using the proposed survey method, bat diversity and activity was recorded in different crops and semi-natural habitats in southern Rhineland-Palatinate. Simultaneously, the availability of aerial prey insects was studied by using light and sticky traps. In more than 500 sampling nights about 110,000 call sequences were acoustically recorded and almost 120,000 nocturnal insects were sampled. A total of 14 bat species were recorded, among them the locally rare and critically endangered northern bat (Eptesicus nilssonii) and the barbastelle (Barbastella barbastellum), all of them also occurring over agricultural fields. The agricultural landscape of southern Palatinate is dominated by vineyards, a habitat that was shown to be of low quality for most bat species because of the demonstrated low availability of small aerial insects. By surveying bat activity and food availably in a pair-wise design on several rain water retention ponds and neighbouring vineyards it was demonstrated that aquatic insect emergence in artificial wetlands can provide an important resource subsidy for bats. The creation of artificial wetlands would be a possibility to create important foraging habitats for bats and mitigate negative effects of management practice in the agricultural landscape.
In several other agricultural crops, however, high abundances of suitable prey insects and high bat activity levels, comparable or even higher than in the nearby forests and meadows known to be used as foraging habitats were demonstrated. Especially high bat activity levels were recorded over several fruit orchards and vegetable fields where insects were also present. Both crops are known for high pesticide inputs, and, therefore, a pesticide exposure through ingestion of contaminated insects can not be excluded. To follow the current risk assessment approach for birds and mammals pesticide residues were measured on bat-specific food items in an apple orchard following insecticide applications and bat activity was recorded in parallel. The highest residue values were measured on foliage-dwelling arthropods which may results in a reproductive risk for all bat species that, even to a small extent, include this prey group in their diet. The presence of bats in agricultural landscapes that form a majority of the land area in Europe but also on a global scale leads to exposure of bats by contaminated food and depletion of their food resources by pesticide use. So far conservation efforts for bats focussed on securing hibernation sites and the creation of artificial roost sites since especially the latter were thought to be limiting population growth. However the potential pesticide effects might be also crucial for the population persistence in agricultural landscapes of bats and need to be addressed adequately, especially in risk assessment procedures for the regulation of pesticides.
Worldwide one third to one half of the freshwater crayfish species are threatened with population decline or extinction. Besides habitat deterioration, pollution, and other man-made environmental changes, invasive species and pathogens are major threats to the survival of European crayfish species. Freshwater crayfish are the largest freshwater invertebrates and strongly influence the structure of food webs. The disappearance of crayfish from a water body may change the food web and could have dramatic consequences for an ecosystem.rnOne goal in modern species conservation strategies is the conservation of genetic diversity, since genetic diversity is an advantage for the long-term survival of a species. The main aim of my thesis was to reveal the genetic structure and to identify genetic hotspots of the endangered noble crayfish (Astacus astacus) throughout Europe (part 1 of my thesis). Since the most significant threat to biodiversity of European crayfish species is the crayfish plague pathogen Aphanomyces astaci I studied new aspects in the distribution of A. astaci (part two of my thesis). The results serve as a basis for future conservation programs for freshwater crayfish. In the first part of my thesis I conducted a phylogeographic analysis of noble crayfish using mitochondrial DNA and nuclear microsatellite data. With these methods I aimed to identify its genetic hotspots and to reconstruct the recolonization history of central Europe by this species. I detected high genetic diversities in southestern Europe indicating that noble crayfish outlasted the cold climate phases during the Pleistocene in this region (Appendix 1). Because of the high genetic diversity found there, southeastern Europe is of particular importance for the conservation of noble crayfish. The mitochondrial DNA analysis points to a bifurcated colonization process from the eastern Black Sea basin to a) the North Sea and to b) the Baltic Sea basin (Appendix 2). A second independent refugium that was localized on the Western Balkans did not contribute to the colonization of central Europe. Furthermore, I found that the natural genetic structure is dissolved, probably due to the high human impact on the distribution of noble crayfish (e.g. artificial translocation). In the second part of this thesis using real-time PCR I identified calico crayfish (Orconectes immunis) as the fourth North American crayfish species to be carrier of the agent of the crayfish plague (Appendix 3). Furthermore I detected the crayfish plague pathogen in American spiny-cheek crayfish (Orconectes limosus) and native narrow-clawed crayfish (Astacus leptodactylus) in the lower Danube in Romania (Appendix 4). The distribution of infected spiny-cheek crayfish poses a threat to the native biodiversity in southeastern Europe and shows the high invasion potential of this crayfish species. Moreover, I found that even the native narrow-clawed crayfish in the Danube Delta, about 970 km downstream of the current invasion front of American crayfish, is a carrier of A. astaci (Appendix 5). This finding is of high importance, as the native species do not seem to suffer from the infection. In Appendix 6 I elucidate demonstrate that the absence of the crayfish plague agent is the most likely explanation for the coexistence of populations of European and American crayfish in central Europe. In my thesis I show that the common assumption that all North American crayfish are carrier of A. astaci and that all native crayfish species die when infected with A. astaci does not hold true. The studies presented in my thesis reveal new aspects that are crucial for native crayfish conservation: 1) The genetic diversity of noble crayfish is highest in southeastern Europe where noble crayfish outlasted the last glacial maximum in at least two different refugia. 2) Not all American crayfish populations are carrier of A. astaci and 3) not all Europen crayish populations die shortly after being infected with the crayfish plague pathogen.rnTo conserve native crayfish species and their (genetic) diversity in the long term, further introductions of American crayfish into European waters must be avoided. However, the introduction will only decrease if the commercial trade with non-indigenous crayfish species is prohibited.
Agricultural pesticides, especially insecticides, are an integral part of modern farming. However, these may often leave their target ecosystems and cause adverse effects in non- target, especially freshwater ecosystems, leading to their deterioration. In this thesis, the focus will be on Insect Growth Regulators (IGRs) that can in many ways cause disruption of the endocrine system of invertebrates. Freshwater invertebrates play important ecological, economic and medical roles, and disruption of their endocrine systems may be crucial, considering the important role hormones play in the developmental and reproductive processes in organisms. Although Endocrine Disruption Chemicals (EDCs) can affect moulting, behaviour, morphology, sexual maturity, time to first brood, egg development time, brood size (fecundity), and sex determination in invertebrates, there is currently no agreement upon how to characterize and assess endocrine disruption (ED). Current traditional ecotoxicity tests for Ecological Risk Assessment (ERA) show limitations on generating data at the population level that may be relevant for the assessment of EDCs, which effects may be sublethal, latent and persist for several generations of species (transgenerational).
It is therefore the primary objective of this thesis to use a test method to investigate adverse effects of EDCs on endpoints concerning development and reproduction in freshwater invertebrates. The full life-cycle test over two generations that includes all sensitive life stages of C. riparius (a sexual reproductive organism) allows an assessment of its reproduction and should be suitable for the investigation of long-term toxicity of EDCs in freshwater invertebrates. C. riparius is appropriate for this purpose because of its short life cycle that enables the assessment of functional endpoints of the organism over several generations. Moreover, the chironomid life cycle consists of a complete metamorphosis controlled by a well-known endocrine mechanism and the endocrine system of insects has been most investigated in great detail among invertebrates. Hence, the full life-cycle test with C. riparius provides an approach to assess functional endpoints (e.g. reproduction, sex ratio) that are population-relevant as a useful amendment to the ERA of EDCs. In the laboratory, C. riparius was exposed to environmentally-relevant concentrations of the selected IGRs in either spiked water or spiked sediment scenario over two subsequent generations.
The results reported in this thesis revealed significant effects of the IGRs on the development and the reproduction of C. riparius with the second (F1) generation showing greater sensitivity. These findings indicated for the first time the suitability of multigenerational testing for various groups of EDCs and strongly suggested considering the full life-cycle of C. riparius as an appropriate test method for a better assessment of EDCs in the freshwater environment. In conclusion, this thesis helps to detect additional information that can be extrapolated at population level and, thus, might contribute to better protection of freshwater ecosystems against the risks of Endocrine Disrupting Chemicals (EDCs.) It may furthermore contribute to changes in the ERA process that are necessary for a real implementation of the new European chemical legislation, REACH (Registration, Evaluation Authorization and Restriction of Chemicals). Finally, significant interactions between temperature, chemical exposure and generation were reported for the first time and, may help predict impacts that may occur in the future, in the field, under predicted climate change scenarios.
Wild boars belong to the most wide spread ungulates in the world. They are characterized by a well performed adaption to their environment mainly due to their omnivorous dietary. The wild boar population in Germany increased during the past three decades. Nowadays their high density leads to problems in agricultural areas due to damage of crops and plays a significant role as disease vector as the classical swine fever. For an effective population management population size information is of crucial importance. Different traditional methods exist to estimate population sizes as direct sightnings, faecal drop counts or hunting harvest which provide only relative estimates and population trends. Absolute population sizes could be yielded by a Capture-Mark-Recapture (CMR) approach. However, capturing of wild boars is difficult to realize and costly in terms of personnel and field effort.
Furthermore the capture probabilities are heterogeneous due to the variable behaviour of individuals influenced by age, sex, and experience of the animals. Non-invasive genetic methods are a promising complement to the traditional methods for population size estimation particularly for wild boar. These methods reduce stress and capture bias and increase the number of re-captures. Faeces proved to be a suitable DNA source for wild boar genotyping, due to almost equal capture probability. However working with faeces implicates difficulties such as low DNA rnquality and quantity, genotyping errors as dropout and false alleles.
The main aim of the present study was to develop a reliable, cost-efficient, reproducible and practicable method for wild boar genotyping. This method should provide a reliable dataset of genotypes obtained from the collected faeces samples. Individual identification forms the basis for an improved mark-recapture approach. As there is no sound method for absolute population counts in free living wild boar, reference values for the validation of this new approach are missing. Therefore, different routines to reduce and to assess genotyping errors were compared within this thesis. For maximum amplification rate, the storage, the extraction methods and the PCR-procedure were optimised. A step by step procedure was evaluated in order to determine the minimum required microsatellite (MS) number for reliable individual identification including a test with family groups (female and embryo tissue) to distinguish even between close relatives. A multiple-tubes approach, post-amplification checking and different correction procedures were applied to reduce genotyping errors. In order to quantify real genotyping error rates (GER) of datasets derived from sampling in the Palatinate Forest in western Germany, different methods for GER determination were compared with each other, obtaining GERs between 0% and 57.5%. As a consequence, more strict criteria for the multi-tube approach and increased repetition number of homozygous samples were used. An additional method validation was the implementation of a blind test to achieve the reliability of the genotyping and error checking procedure. Finally a strict and practicable proposal for the lab procedure was developed, by beginning with faecal sample collection and ending with a reliable dataset with genotypes of each sample.
The results of the presented method were derived from two sampling periods in a 4000 ha area in the Palatinate Forest in Rhineland-Palatinate in December 2006 and 2007. Both provided high confidence intervals (CI) applying inaccurate estimates (eg. for 2006 population size amounted to 215 with CI 95% of 156-314 and for 2007 population size amounted to 415 with CI 95% of 318-561) due to low sampling sizes (for 2006 n = 141 and for 2007 n = 326), successfully analysed samples (for 2006 n = 89 and for 2007 n = 156) and recapture numbers (for 2006 n = 12 and for 2007 n = 24). Furthermore, the population estimates even for the lowest values were considerably higher than previously assumed by hunting statistics, which implicates an ineffective hunting regime in the study area. For the future prospect, to obtain more precise population size estimations the increase of sampling sizes is inevitable, because absolute and reliable estimates are highly desirable for wildlife management and the control of diseases transmission. Nevertheless, the method for individual genotyping of wild boars evaluated in this thesis could be successfully established resulting in reliable datasets for population estimation modelling with sufficiently low GER.
New media are continually gaining importance in society. This process also has an increasing influence on developments in the field of education. Due to the use of computers as an integral part of schooling, new possibilities with regard to the organisation of learning processes arise. In this context, it is of great significance that appropriate computer applications for the respective learning group be prepared, so that justifiable use of computers in lessons can take place. Furthermore, efficient integration of computers requires changes in spatial organisation, in teaching methodology and in the role of the teacher. Such reflection and re-orientation are the essential basis for meaningful usage of new media in teaching and learning processes. An initial aim of this thesis is an empirical analysis of the situation regarding the usage of computers in geometry lessons in primary schools, based on a regional survey. The evaluation gives information as to how intensively the computer is used in the learning process and shows us which factors determine the use of computers in geometry lessons.
The results are an empirical foundation for the development of a computer-based learning environment called "Geolizi" (the second aim of my study). Within this learning environment, the pupils should work independently on the topics "mirror-imaged figures" and "the construction of rectangles and squares", with the help of the computer. During this process, hands-on media, traditional drawing instruments and interactive worksheets are available to the pupils. The computer (with its appropriate applications) takes over different functions in this learning process. Testing of this learning environment ("Geolizi") took place in several primary school classes, within the scope of formative and summative evaluation. With the help of questionnaires filled in by the pupils, the usability of the individual elements was tested. Based on a pre-post-investigation design, an attempt has been made to discover possible changes in the attitude of teachers regarding the usage of computers in the teaching of elementary geometry.
The results of this test phase, together with the evaluation of the questionnaires, lead to the founded presumption that usage of the multimedia-based learning environment " Geolizi " could result in greater use of computers in geometry lessons. All in all, the developed learning environment demonstrates an interesting possibility of how to use computers in the teaching of geometry at primary schools, thus making an important contribution to an independent, individualised learning process.
Population genetic structure in European Hyalodaphnia species: Monopolization versus gene flow
(2012)
Cyclic parthenogens displays an alternation of asexual and sexual reproduction which has consequences for the genetic structure of these organisms. The clonal diversity of cyclic parthenogenetic zooplankton populations is influenced by the size of the dormant egg bank, i.e., the amount of sexually produced dormant eggs that assembled in the sediment, as these dormant eggs contribute new genetic variants to the populations. Further, the clonal diversity is impacted by clonal erosion over time, which reduces the number of different clones through stochastic and selective processes. Although freshwater invertebrates are good dispersers through their dormant stages, the influence of gene flow is assumed to be negligible, as the local population successfully monopolizes the available resources. As these populations reach carrying capacity fast due to the asexual reproduction, the first colonizing individuals are able to successfully establish in the habitat, resulting in a priority effect which hinders the invasion of new genotypes. Due to clonal selection and sexual reproduction a population will locally adapt over time and will establish a dormant egg bank which facilitates the fast re-colonization after a hostile period. This thesis evaluates the processes altering the population genetic structure of cyclic parthenogenetic zooplankton with a special focus on the concepts of monopolization as well as the counteracting effects of gene flow, using large-lake Daphnia species. Thirty-two variable microsatellite DNA markers were developed and a subset of twelve markers was evaluated regarding their suitability for species assignment and hybrid class detection. With this marker set and an additional mitochondrial DNA marker forty-four natural European populations of the species D. cucullata, D. galeata and D. longispina were studied. In D. galeata, most populations were characterized by low clonal diversities which suggest high influence from clonal erosion over the growing season and a low contribution from the dormant egg bank. Further, recent expansions as well as gene flow were detected, probably caused by the anthropogenic alteration of freshwater habitats, in particular eutrophication of many European lakes. D. longispina and D. cucullata revealed a different genetic structure compared to D. galeata, with high genetic differentiation among populations. This indicates low levels of effective gene flow which is in line with the predictions of monopolization. Further, high clonal diversities were found in populations of the two taxa, suggesting a high contribution from the dormant egg bank while clonal erosion was often not detectable. In D. longispina, mitochondrial data revealed an ancient expansion which was probably initiated by the formation of glacial lakes after the last ice age.
In addition, in D. longispina not only clonal diversity but also genetic diversity was high, indicating that during the build-up of the studied populations the influence from gene flow was probably high. To better understand the processes that act on early populations the population build-up in regard to the temporal advantage of clones during invasion succession was experimentally studied and revealed that priority effects shape population structure of Daphnia species. However, in certain cases the highly superior clones resulted in the extinction of inferior clones independent of the temporal advantage the single clones had.
This clearly shows that not only the time of succession is important but also the competitive strength. rnIn conclusion, the results obtained show that the population genetic structure in cyclic parthenogenetic zooplankton species is impacted by various processes. In addition to earlier studies, which mainly focus on local adaptation, clonal erosion and the size of the dormant egg bank to understand population genetic structure, this thesis could show that gene flow may be effective as well. During population build-up the advantage of early arriving individuals does not necessarily predict the outcome of population assembly, as additional genotypes may contribute to the population. Finally, the genetic structure of established populations may be severely impacted by effective gene flow, if severe environmental changes alter the habitat of the locally adapted population.
To assess the effect of organic compounds on the aquatic environment, organisms are typically exposed to toxicant solutions and the adverse effects observed are linked to the concentration in the surrounding media. As compounds generally need to be taken up into the organism and distributed to the respective target sites for the induction of effects, the internal exposure is postulated to best represent the observed effects.
The aim of this work is to contribute to an improved effect assessment of organic compounds by describing experimental and modelling methods to obtain information on the internal exposure of contaminants in organisms.
Chapter 2 details a protocol for the determination of bioconcentration parameter for uptake (k1) and elimination (k2) of organic compounds in zebrafish (Danio rerio) eggs. This enables the simulation of the internal exposure in zebrafish eggs from an ambient exposure concentration over time. The accumulated contaminant amount in zebrafish eggs was also determined, using a biomimetic extraction method. Different bioconc-entration estimation models for the determination of internal steady-state concentrat-ion of pharmaceutical compounds in fish to an environmental exposure are presented in Chapter 3. Bioconcentration factors were estimated from the compounds octanol: water partition coefficient (KOW) to determine the internal exposure to an ambient concentration.
To assess the integral bioavailable fraction from the water and sediment phase of environmental contaminants for rooted aquatic plants, the internal exposure in river-living Myriophyllum aquaticum plants were determined over time, presented in Chapter 4. The plants were collected at different time points, with the accumulated organic contaminants determined using a liquid extraction method.
In Chapter 5 a protocol was established to enable the non-invasive observation of effects in M. aquaticum plants exposed to contaminated sediments over time. Since the toxicant effects are a result of all uptake and distribution processes to the target site and the toxico-dynamic process leading to an observed effect during static exposure, information on the internal exposure could thus be gained from the temporal effect expression.rn
Recent EU-frameworks enforce the implementation of risk mitigation measures for nonpoint-source pesticide pollution in surface waters. Vegetated surface flow treatments systems (VTS) can be a way to mitigate risk of adverse effects in the aquatic ecosystems following unavoidable pollution after rainfall-related runoff events. Studies in experimental wetland cells and vegetated ditch mesocosms with common fungicides, herbicides and insecticides were performed to assess efficiency of VTS. Comprehensive monitoring of fungicide exposure after rainfall-related runoff events and reduction of pesticide concentrations within partially optimised VTS was performed from 2006-2009 at five vegetated detention ponds and two vegetated ditches in the wine growing region of the Southern Palatinate (SW-Germany).
Influence of plant density, size related parameters and pesticide properties in the performance of the experimental devices, and the monitored systems were the focus of the analysis. A spatial tool for prediction of pesticide pollution of surface waters after rainfall-related runoff events was programmed in a geographic information system (GIS). A sophisticated and high resolution database on European scale was built for simulation. With the results of the experiments, the monitoring campaign and further results of the EU-Life Project ArtWET mitigation measures were implemented in a georeferenced spatial decision support system. The database for the GIS tools was built with open data. The REXTOX (ratio of exposure to toxicity) Risk Indicator, which was proposed by the OECD (Organisation for Economic Co-operation and Development), was extended, and used for modeling the risk of rainfall-related runoff exposure to pesticides, for all agricultural waterbodies on European scale. Results show good performance of VTS. The vegetated ditches and wetland cells of the experimental systems showed a very high reduction of more than 90% of pesticide concentrations and potential adverse effects. Vegetated ditches and wetland cells performed significantly better than devices without vegetation. Plant density and sorptivity of the pesticide were the variables with the highest explanatory power regarding the response variable reduction of concentrations. In the experimental vegetated ditches 65% of the reduction of peak concentrations was explained with plant density and KOC. The monitoring campaign showed that concentrations of the fungicides and potential adverse effects of the mixtures were reduced significantly within vegetated ditches (Median 56%) and detention ponds (Median 38%) systems. Regression analysis with data from the monitoring campaign identified plant density and size related properties as explanatory variables for mitigation efficiency (DP: R²=0.57, p<0.001; VD:
R²=0.19, p<0.001). Results of risk model runs are the input for the second tool, simulating three risk mitigation measures. VTS as risk mitigation measures are implemented using the results for plant density and size related performance of the experimental and monitoring studies, supported by additional data from the ArtWET project. Based on the risk tool, simulations can be performed for single crops, selected regions, different pesticide compounds and rainfall events. Costs for implementation of the mitigation measures are estimated. Experiments and monitoring, with focus on the whole range of pesticides, provide novel information on VTS for pesticide pollution. The monitoring campaign also shows that fungicide pollution may affect surface waters. Tools developed for this study are easy to use and are not only a good base for further spatial analysis but are also useful as decision support of the non-scientific community. On a large scale, the tools on the one hand can help to compute external costs of pesticide use with simulation of mitigation costs on three levels, on the other hand feasible measures mitigating or remediating the effects of nonpoint-source pollution can be identified for implementation. Further study of risk of adverse effects caused by fungicide pollution and long-time performance of optimised VTS is needed.
Studies have shown that wastewater treatment plant (WWTP) effluents are the major pathways of organic and inorganic chemicals of anthropogenic use (=micropollutants) into aquatic environments. There, micropollutants can be transferred to ground water bodies - and may finally end up in drinking water - or cause various effects in aquatic organisms like multiple resistances of bacteria. Hence, the upgrading of WWTPs with the aim to reduce the load of those micropollutants is currently under discussion.
Therefore, the primary objective of this thesis was to assess ecotoxicological effects of wastewater ozonation, a tertiary treatment method, using specifically developed toxicity tests with Gammarus fossarum (Koch) at various levels of ecological complexity. Several studies were designed in the laboratory and under semi-field conditions to cope with this primary objective. Prior to the investigations with ozone treated wastewater, the ecotoxicity of secondary treated (=non-ozone treated) wastewater from WWTP Wüeri, Switzerland, for the test species was assessed by a four-week experiment. This experiment displayed statistically significant impairments in feeding, assimilation and physiological endpoints related to population development and reproduction. The first experiment investigating ecotoxicological implications of ozone application in wastewater from the same WWTP displayed a preference of G. fossarum for leaf discs conditioned in ozone treated wastewater when offered together with leaf discs conditioned in non-ozone treated wastewater. This effect seems to be mainly driven by an alteration in the leaf associated microbial community. Another series of laboratory experiments conducted also with wastewater from WWTP Wüeri treated with ozone at the lab- or full-scale, revealed significantly increased feeding rates of G. fossarum exposed to ozone treated wastewater compared to non-ozone treated wastewater. These laboratory experiments also indicated that any alteration in the organic matrix potentially caused by ozone treatment is not related to the effects in feeding as this endpoint showed only negligible deviation in secondary treated wastewater, which contained hardly any (micro)pollutants (i.e. pharmaceuticals), from the same wastewater additionally treated with ozone. Moreover, it was shown that shifts in the dissolved organic carbon (DOC) profile do not affect the feeding rate of gammarids. In situ bioassays conducted in the receiving stream of the WWTP Wüeri confirmed the results of the laboratory experiments by displaying significantly reduced feeding rates of G. fossarum exposed below the WWTP effluent if non-ozone treated wastewater was released. However, at the time the ozonation was operating, no adverse effects in feeding rates were observed below the effluent compared to the unaffected upstream sites. Also population studies in on-site flow-through stream microcosms displayed an increased feeding and a statistically significantly higher population size after ten weeks when exposed to ozone treated wastewater compared to non-ozone treated wastewater.
In conclusion, the present thesis documents that ozonation might be a suitable tool to reduce both the load of micropollutants as well as the ecotoxicity of wastewaters. Thus, this technology may help to meet the requirements of the Water Framework Directive also under predicted climate change scenarios, which may lead to elevated proportions of wastewater in the receiving stream during summer discharge. However, as ozone application may also produce by-products with a higher toxicity than their parent compounds, the implementation of this technique should be assessed further both via chemical analysis and ecotoxicological bioassays.
Gibt es unterschiedliche Qualitäten für das Wohnumfeld von Bewohnern ländlicher Siedlungen in der südlichen Pfalz? Wie könnte man diese Unterschiede quantifizierbar machen? Dies sind die beiden zentralen Fragen dieser Arbeit. Die Raummerkmale sollen zunächst objektiv erfasst werden. In einem weiteren Schritt werden die subjektiven Einschätzungen der Bevölkerung ermittelt und schließlich mit der objektiven Aufnahme verglichen. Zu diesem Zweck wur¬den 12 Ortschaften im Bereich der südlichen Pfalz ausgewählt. Jeweils vier Siedlungen verteilen sich auf den Pfälzerwald (Wilgartswiesen, Bundenthal, Ludwigswinkel, Silz), auf die Weinstraße (Siebeldingen, Göcklingen, Oberotterbach, Pleisweiler-Oberhofen) und auf die Rheinebene (Kapsweyer, Winden, Hayna, Büchelberg). Ein klar umgrenzter geographischer Raum wurde um jede Siedlung im Hinblick auf natürliche Gunst-/Ungunstfaktoren (aus den Bereichen Geologie, Boden, Geomorphologie, Klima, Hydrologie und Vegetation) und kulturhistorische Gunst-/Ungunstfaktoren (aus den Bereichen Siedlung, Flur, Mensch) mit ausgewählten aussagekräftigen Parametern untersucht. Diese wurden zu Merkmalskomplexen zusammengeführt und die dabei gewonnenen Erkenntnisse mit einem Bewertungsraster verknüpft und den einzelnen Orten zugeordnet. Die menschlichen Einschätzungen der gegebenen und auch der gemachten Umwelt sollen in die Überlegungen mit einfließen, und deshalb sind Befragungen der Einwohner durchgeführt worden. So erhielt man Erkenntnisse sowohl über die objektiven Lebensraumbedingungen als auch über die subjektiven Lebensraumbewertungen des Untersuchungsraumes. Eine zentrale Rolle spielt hier also der Raum mit seinen Verflechtungen, Interaktionen und Systembeziehungen für das menschliche Leben darin. Zur Ermittlung der objektiven Merkmale der Siedlungen wurden die folgenden Parameter erfasst: Ortseingänge, Naturnähe, Vielfalt, Eigenart, Ästhetik, Klima, Raum, Lärm/Luft, Erdbeben und Ertrag. Orte mit hohem Waldanteil (v. a. Pfälzerwaldorte) wiesen bessere Bewertungen in den Kategorien Naturnähe, Vielfalt, Ästhetik und Klima auf. Orte mit höheren Reb- und Ackerfluranteilen schnitten bei der Eigenart und dem Ertrag besser ab. Deshalb wurden die Orte im Pfälzerwald insgesamt und durchschnittlich am besten bewertet, gefolgt von den Siedlungen der Rheinebene und der Weinstraße. Diese Ergebnisse wurden anschließend mit den Ergebnissen der Befragungen in den einzelnen Orten, welche selbst sehr unterschiedlich ausfielen, verglichen. Dabei musste festgestellt werden, dass die Bewertung der lebensräumlichen Gegebenheiten durch die Befragten in der Regel besser ausfiel als deren objektive Einstufung. Am zufriedensten sind und am besten bewertet haben die Bewohner der Pfälzerwaldorte, gefolgt von denen der Rheinebene und der Weinstraße. Diese somit feststellbare positive Korrelation lässt vermuten, dass zukünftiges Planen im Meinungsbild der Bevölkerung, die schließlich besonders davon betroffen ist, auch akzeptiert werden kann. Öffentlichkeitsarbeit und die Aufklärung der Bevölkerung in lebensraumrelevanten Angelegenheiten sollten dabei nicht vernachlässigt werden.
Die Arbeit stellt die Frage nach den Effekten einer tertiären Präventionsmaßnahme in Bezug auf Schmerzbewältigung und Schmerzveränderung bei chronischen Lumbalgiepatienten. Im Rahmen der Überprüfung werden ausdifferenzierte psychophysische Interventionsmaßnahmen aus den Bereichen der Physiotherapie/Krankengymnastik und Psychologie eingesetzt. Die Gruppenunterteilung erfolgt in eine behandelte Versuchsgruppe und eine unbehandelte Warte-Kontrollgruppe mit jeweils 100 Probanden (N=200). Die Ergebnisse der tertiären Präventionsmaßnahme zeigen statistisch und klinisch relevante sowie positive Veränderungen in den Bereichen der Schmerzbewältigung und Schmerzveränderung.
Das Grundwasser unterliegt zahlreichen Nutzungen, gleichzeitig ist es Lebensraum einer artenreichen, hoch angepaßten Fauna. Verunreinigungen des Grundwassers mit Kontaminationen unterschiedlichsten Ursprungs stellen eine wachsende Problematik dar. Für das Monitoring von Altlastflächen werden bisher überwiegend physiko-chemische Methoden eingesetzt. Als weitere Möglichkeit bietet sich ein grundwasserfaunistisch begründetes Monitoring an. Da Freilanduntersuchungen über das Auftreten und die Verteilung von Grundwasserfauna in Altlastflächen bisher fehlen, widmet sich die vorliegende Dissertation dieser Thematik. Ein grundsätzliches Problem grundwasserfaunistischer Untersuchungen ist das Fehlen standardisierter Sammelmethoden. Daher erwies es sich als notwendig, die für die Untersuchung der Altlastflächen optimale Sammelmethode zu identifizieren. Insoweit liefert ein vorangehender Methodenvergleich die Grundlage für das Altlasten-Projekt. Ziel des Methodenvergleichs war es herauszufinden, ob die in Kluftgrundwasserleitern im Vergleich mit Lockergesteinsleitern festgestellte Artenarmut und die meist niedrigen Abundanzen habitat- oder auch methodenbedingt sind. Unter Verwendung eines phreatobiologischen Netzsammlers, einer pneumatischen Kolbenhubpumpe (System NIEDERREITER) und eines Quellnetzes wurden im Naturraum Pfälzerwald 16 Grundwasser-meßstellen (je 8 in den Kluftaquiferen des Buntsandsteins und den sandig-kiesigen Aquiferen der Talauen) und 8 Quellen, sowie 4 Grundwassermeßstellen in der pfälzischen Rheinebene hydrochemisch und faunistisch beprobt. Die Grundwässer beider Naturräume unterschieden sich sowohl hydrochemisch wie auch in ihrer faunistischen Zusammensetzung signifikant voneinander. Aus methodischer Sicht zeigten alle Sammeltechniken, mit Ausnahme der Quellbeprobung, trotz gewisser Unterschiede, qualitativ vergleichbare Ergebnisse. Ziel des Hauptteils der Arbeit " dem Altlasten-Projekt " war die Gewinnung erster empirischer Daten über das Vorkommen und die Verteilung von Grundwasserfauna in Abhängigkeit von Altlasten. Des weiteren sollten über die Korrelation der Grundwasserfauna mit hydrochemischen Parametern und den Koloniezahlen erste Ansätze für eine bioindikative Eignung gefunden werden. Basierend auf den Ergebnissen des methodischen Teils wurden unter Verwendung des phreatobiologischen Netzsammlers fünf in der pfälzischen Rheinebene liegende Untersuchungsstandorte (sechs Einzelschäden), die Kontaminationen unterschiedlicher Art aufwiesen, untersucht. Dabei handelte es sich um drei militärische und zwei industrielle Altlasten sowie eine Hausmülldeponie. Insgesamt wurden 91 Meßstellen, die sich im Zustrom, direkt im Schaden sowie im Abstrom befanden, zweimalig beprobt. Trotz der ausgeprägten Heterogenität der untersuchten Altlaststandorte sowie geringer Arten- und Taxazahlen und Abundanzen weisen die Verteilungsmuster auf Sensitivitäten der Fauna gegenüber Grundwasserverunreinigungen hin. In bezug auf einzelne Schadstoffe (LCKW, PCE, AKW) deuten sich schadstoffspezifische Verteilungsmuster der Fauna an. Das abundanteste Taxon der Untersuchung - die Nematoda - traten an den LCKW / PCE- kontaminierten Standorten nur in geringsten Abundanzen auf, ebenso wie die Parastenocaridae (Crustacea). Oligochaeta und einzelne Cyclopoida-Arten (Crustacea) scheinen hingegen deutlich höhere Konzentrationen dieses Schadstoffs zu tolerieren. Eine gegensätzliche Faunenverteilung wurde an den AKW- kontaminierten Standorten beobachtet. Hier zeigten sich die Nematoda wesentlich toleranter als alle anderen Taxa, ebenso wie die Parastenocaridae. Hingegen traten die Oligochaeta und Cyclopoida oberhalb geringer Konzentrationen nur noch sporadisch auf. Die abundanteste Cyclopoida-Art der gesamten Untersuchung, Diacyclops languidoides, konnte in Anwesenheit von AKW nicht nachgewiesen werden.
Fate and effects of insecticides in vegetated agricultural drainage ditches and constructed wetlands
(2006)
Studies have shown that runoff and spray-drift are important sources of nonpoint-source pesticide pollution of surface waters. Owing to this, public concern over the presence of pesticides in surface and ground water has resulted in intensive scientific efforts to find economical, yet environmentally sound solutions to the problem. The primary objective of this research was to assess the effectiveness of vegetated aquatic systems in providing buffering between natural aquatic ecosystems and agricultural landscape following insecticide associated runoff and spray-drift events. The first set of studies were implemented using vegetated agricultural ditches, one in Mississippi, USA, using pyrethroids (bifenthrin, lambda-cyhalothrin) under simulated runoff conditions and the other in the Western Cape, South Africa using the organophosphate insecticide, azinphos-methyl (AZP), under natural runoff and spray-drift conditions. The second set of studies were implemented using constructed wetlands, one in the Western Cape using AZP under natural spray-drift conditions and the other in Mississippi, USA using the organophosphate MeP under simulated runoff conditions. Results from the Mississippi-ditch study indicated that ditch lengths of less than 300 m would be sufficient to mitigate bifenthrin and lambda-cyhalothrin. In addition, data from mass balance calculations determined that the ditch plants were the major sink (generally > 90%) and/or sorption site for the rapid dissipation of the above pyrethroids from the water column. Similarly, results from the ditch study in South Africa showed that a 180 m vegetated system was effective in mitigating AZP after natural spray drift and low flow runoff events. Analytical results from the first wetland study show that the vegetated wetland was more effective than the non-vegetated wetland in reducing loadings of MeP. Mass balance calculations indicated approximately 90% of MeP mass was associated with the plant compartment. Ninety-six hours after the contamination, a significant negative acute effect of contamination on abundances was found in 8 out of the 15 macroinvertebrate species in both wetland systems. Even with these toxic effects, the overall reaction of macroinvertebrates clearly demonstrated that the impact of MeP in the vegetated wetland was considerably lower than in the non-vegetated wetland. Results from the constructed wetland study in South Africa revealed that concentrations of AZP at the inlet of the 134 m wetland system were reduced by 90% at the outlet. Overall, results from all of the studies in this thesis indicate that the presence of the plant compartment was essential for the effective mitigation of insecticide contamination introduced after both simulated and natural runoff or spray-drift events. Finally, both the vegetated agricultural drainage ditch and vegetated constructed wetland systems studied would be effective in mitigating pesticide loadings introduced from either runoff or spray-drift, in turn lowering or eliminating potential pesticide associated toxic effects in receiving aquatic ecosystems. Data produced in this research provide important information to reduce insecticide risk in exposure assessment scenarios. It should be noted that incorporating these types of best management practices (BMPs) will decrease the risk of acute toxicity, but chronic exposure may still be an apparent overall risk.
The estimation of the potential risk of pesticide entries into streams - and therefore the potential risk for the ecosystems - is an important requirement for the planning of risk mitigation strategies. Especially on the landscape level the required event triggered sampling methods are conjuncted with considerable efforts with regard to input data, time and personnel. To circumvent these problems simulation models form a reasonable alternative. The aims of this work were (A) the development of a simulation tool for the estimation of pesticide entries into surface waters on the landscape level, and (B) the application of the simulator for an exposure- and risk-assessment as well as the assessment of negative effects of pesticides on aquatic communities. Section 1 - Exposure-, Risk- and Effects In sections 1.1 and 1.2 the simulation model was applied to a multitude of small and medium sized streams in an agricultural impacted study area around the city of Braunschweig, Germany. Section 1.3 gives an overview of the simulators field of application and the general system structure. Section 1.1 - Scenario based simulation of runoff-related pesticide entries into small streams on a landscape level (English publication, p. 27): In this paper we present a simulation tool for the simulation of pesticide entry from arable land into adjacent streams. We used the ratio of exposure to toxicity (REXTOX) model proposed by the OECD which was extended to calculate pesticide concentrations in adjacent streams. We simulated the pesticide entry on the landscape level at 737 sites in small streams situated in the central lowland of Germany. The most significant model parameters were the width of the no-application-zone and the degree of plant-interception. The simulation was carried out using eight different environmental scenarios, covering variation of the width of the no-application-zone, climate and seasonal scenarios. The highest in-stream concentrations were predicted at a scenario using no (0 m) buffer zone in conjunction with increased precipitation. According to the predicted concentrations, the risk for the aquatic communities was estimated based on standard toxicity tests and the application of a safety factor. Section 1.2 - Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level (English publication, p. 50): In this study the average numbers of invertebrate species across an arable landscape in central Germany (surveys from 15 years in 90 streams at 202 sites) were assessed for their correlation with environmental factors such as stream width, land use (arable land, forest, pasture, settlement), soil type and agricultural derived stressors. The stress originating from arable land was estimated by the factor "risk of runoff", which was derived from a runoff-model (rainfall induced surface runoff). Multivariate analysis explained 39.9% of the variance in species number, revealing stream width as the most important factor (25.3%) followed by risk of runoff (9.7%). Section 1.3 - Informationssystem zur ökotoxikologischen Bewertung der Gewässergüte in Bezug auf Pflanzenschutzmitteleinträge aus der Landwirtschaft - Systemaufbau und Anwendungsmöglichkeiten (German publication, p. 61): Section 1.3 contains a short overview of the simulation tool, the field of application and some examples of use, covering the effects of the width of the buffer zone as well as the creation of risk maps on the landscape level. Section 2 - The simulation tool An important aspect for the employment of a simulation model in the context of risk assessment is the applicability in practice: the accessibility of the needed input data, the conversion of the mathematical model into a software application that can be run on any current personnel computer and also an appropriate end-user documentation of the system. Section 1.4 - Informationssystem zur ökotoxikologischen Bewertung der Gewässergüte in Bezug auf Pflanzenschutzmitteleinträge aus der Landwirtschaft - Simulationsmodell und Systemaufbau (German report, p. 67): In this section a general overview of the simulation model as well as the schematic system structure given. Section 1.5 - Benutzerhandbuch (German report, p. 71): The user manual contains details concerning the installation of the system, generation of the required input data and the general use of the system. Moreover it presents some application examples (what-if analyses). Section 1.6 - Technical documentation (German report, p. 104): The technical documentation describes internal structures and processes of the simulation system. Section 1.6 provides information regarding the required structure of input/output tables.
Quellen sind hochdiverse Lebensräume mit einer stark spezialisierten Fauna, wobei noch Lücken im Verständnis der besiedlungsrelevanten Faktoren für die aquatische Makrofauna bestehen, so dass die Arbeit einen klärenden Beitrag hinsichtlich anthropogener Veränderungen und ihrer Auswirkungen auf die Besied-lung leisten will. Basierend auf Daten von 334 Quellen aller Grundwasserlandschaften von Rheinland-Pfalz wurden die Quellen morphologisch und faunistisch bewertet. Außerdem wurden die Quellen des Landes morphologisch typisiert, Referenzquellen analysiert und ein Ansatz für die morphologische und faunistische Leitbildentwicklung gegeben. Außerdem wird ein selbst entwickeltes, kompaktes Kartier- und Bewertungsverfahren zur Quellstruktur vorgestellt, wo bislang noch ein Defizit bestand. Das Verfahren erfasst in einem Erfassungsbogen alle ökologisch bedeutsamen Strukturparameter und bewertet in einem 5-stufigen System. Quellen sind hochdiverse Lebensräume mit kleinen Populationen in isolierter Lage. Bei der Untersuchung der 310 Quellen wurden insgesamt 292 Arten bzw. höhere Taxa des Makrozoobenthos nachgewiesen. Es wurden 89 quellassoziierte Taxa gezählt, hiervon waren 24 krenobiont und 65 krenophil. Der Anteil der quellassoziierten Fauna an der Gesamtfauna lag bei über 30%. Es fanden sich 19 Erstnachweise für Rheinland-Pfalz, 9 besondere Nachweise (seltene Arten) und 19 Rote-Liste-Arten. Erstnachweise fanden sich in wenig bearbeiteten Dipterengruppen, vor allem den Psychodidae (13), Limoniidae (5) und ferner den Simu-liidae (1). Bei den Köcherfliegen wurden etliche seltene Arten gefunden, welche bisher in Rheinland-Pfalz kaum gefunden wurden. Häufigere krenobionte Taxa waren Crunoecia irrorata, Bythinella dunkeri, Niphar-gus sp., Pisidium personatum, Salamandra salamandra, Thaumalea sp., Agabus guttatus, Crenobia alpina, Oxycera sp. und Beraea maura. Die durchschnittliche Taxazahl pro Quelle betrug 11, die maximale 62 Taxa. Schüttung und Morphologie der Quellen waren von Naturraum und Grundwasserlandschaft abhängig, so schütteten etwa Buntsandsteinquellen ergiebiger und konstanter als Tonschieferquellen. Quellen spiegeln die Hydrologie ihrer Einzugsgebiete wider, so dass in verschiedenen hydrogeologischen Einheiten die chemischen Parameter differierten. In einzelnen Quellen schwankte die Hydrochemie jahreszeitlich aber nur gering. Der pH-Wert etwa war im Quellwasser versauerungsgefährdeter Gebiete niedrig (Hunsrück, Pfälzer-wald), der Nitratgehalt anthropogen bedingt hoch in intensiv landwirtschaftlich genutzten Räumen. Die morphologische Quelltypologie, welche sich in erster Linie auf gängige Quelltypen stützte, ergab in elf hydrogeologischen Quelltypenräumen vier Basisquelltypen und fünf geochemische Sondertypen. Die Wan-derquelle wurde neu hinzu genommen. Die landesweite Verteilung der Quelltypen ergab bei ungefassten Quellen 57 % Sicker-, 32 % Sturz-, 9 % Tümpel- und über 2 % Wanderquellen. Wanderquellen dürften aber noch öfter vorkommen. Relief und Substrateigenschaften waren entscheidende Faktoren für die Typologie, so dass etwa Sturzquellen vor allem im Buntsandstein häufig waren, während Sickerquellen im Tonschiefer des rheinischen Schiefergebirges dominierten. Es wurden 85 Strukturreferenzquellen als typische, naturnahe Beispiele für einzelne Quelltypenräume genannt. Etwa zwei Drittel aller Quellen waren strukturell beein-trächtigt bis stark geschädigt, 59 % gefasst. Fassungen, Verrohrungen und Betonverbau waren ökologisch besonders bedeutsam. In Regionen mit intensiver Landwirtschaft lagen generell die stärksten Schädigungen vor. Im Forst waren Quellen durch Nadelholzmonokulturen und in den Hochlagen pufferarmer Mittelgebirge durch Versauerung geschädigt. Hinsichtlich der Besiedlung ergaben sich Unterschiede zwischen den Naturräumen, beeinflusst durch die Faktoren Geologie, Hydrochemie, Schüttungsverhältnisse, Landnutzung im Einzugsgebiet sowie die Struk-turvielfalt an der Quelle. Strukturell unveränderte und unversauerte Quellen besaßen im Schnitt höhere Ta-xazahlen. Einzelne Faktoren mit Einfluss auf die Besiedlung wurden in ihrer Auswirkung getestet. In Quel-len ist die Versauerung grundsätzlich besiedlungsbeschränkend und überlagert strukturelle Faktoren. Bei niedrigen pH-Werten kommt es zu verminderten Taxazahlen, allerdings sind viele Quellorganismen offen-sichtlich an eine leichte Versauerung angepasst, da in sauren Quellen der Anteil der Quellfauna höher war. Außerdem ergab die Untersuchung, dass neue und intakte Fassungen weniger Taxa und Quelltaxa aufwiesen, während bei alten und verfallenen Fassungen oft eine hohe Quelltaxazahl vorlag, so dass diese als sekundär ökologisch wertvoll zu bezeichnen sind. Die Umfeldnutzung und die Größe des Quellbereichs sind ebenfalls wichtig, so dass Quellen in Laub- und Mischwald sowie in extensivem Grünland am besten besiedelt waren. Die stärksten statistischen Zusammenhänge mit der faunistischen Besiedlung ergaben sich bei den Bewer-tungsergebnissen des Strukturverfahrens, was zeigt, dass das Verfahren realistisch bewertet. Multivariate statistische Methoden dienten der Ermittlung von Besiedlungsfaktoren und der Leitbildentwick-lung. Es ergab sich eine unterschiedliche Besiedlung bei verschiedener Hydrogeologie und Hydrochemie sowie bei verschiedenen Quelltypen. Allerdings waren die Ergebnisse nicht eindeutig, so dass die Trennung der Quelltypen nur teilweise gelang und die Quelltypen von den Grundwasserlandschaften überlagert waren. Die Faunenunterschiede verschiedener Regionen waren größer als die einer Region, so dass morphologische Quelltypen faunistisch nur innerhalb einer hydrogeologischen Einheit von Bedeutung sind. Es wurden regionale faunistische Leitarten für vier Grundwasserlandschaften genannt, wobei sich auf wenige hochstete Quellarten beschränkt wurde. Die Arbeit zeigt, dass faunistisch orientierte Leitbilder nur unter Schwierigkeiten anzugeben sind und vollständige Typuszönosen für größere Gebiete grundsätzlich in Frage zu stellen sind. Sehr häufige grundsätzliche Leitarten für Quellen silikatischer Mittelgebirge in Rheinland-Pfalz sind Crunoecia irrorata und Bythinella dunkeri.