Refine
Keywords
- Mikroverunreinigung (1) (remove)
Studies have shown that wastewater treatment plant (WWTP) effluents are the major pathways of organic and inorganic chemicals of anthropogenic use (=micropollutants) into aquatic environments. There, micropollutants can be transferred to ground water bodies - and may finally end up in drinking water - or cause various effects in aquatic organisms like multiple resistances of bacteria. Hence, the upgrading of WWTPs with the aim to reduce the load of those micropollutants is currently under discussion.
Therefore, the primary objective of this thesis was to assess ecotoxicological effects of wastewater ozonation, a tertiary treatment method, using specifically developed toxicity tests with Gammarus fossarum (Koch) at various levels of ecological complexity. Several studies were designed in the laboratory and under semi-field conditions to cope with this primary objective. Prior to the investigations with ozone treated wastewater, the ecotoxicity of secondary treated (=non-ozone treated) wastewater from WWTP Wüeri, Switzerland, for the test species was assessed by a four-week experiment. This experiment displayed statistically significant impairments in feeding, assimilation and physiological endpoints related to population development and reproduction. The first experiment investigating ecotoxicological implications of ozone application in wastewater from the same WWTP displayed a preference of G. fossarum for leaf discs conditioned in ozone treated wastewater when offered together with leaf discs conditioned in non-ozone treated wastewater. This effect seems to be mainly driven by an alteration in the leaf associated microbial community. Another series of laboratory experiments conducted also with wastewater from WWTP Wüeri treated with ozone at the lab- or full-scale, revealed significantly increased feeding rates of G. fossarum exposed to ozone treated wastewater compared to non-ozone treated wastewater. These laboratory experiments also indicated that any alteration in the organic matrix potentially caused by ozone treatment is not related to the effects in feeding as this endpoint showed only negligible deviation in secondary treated wastewater, which contained hardly any (micro)pollutants (i.e. pharmaceuticals), from the same wastewater additionally treated with ozone. Moreover, it was shown that shifts in the dissolved organic carbon (DOC) profile do not affect the feeding rate of gammarids. In situ bioassays conducted in the receiving stream of the WWTP Wüeri confirmed the results of the laboratory experiments by displaying significantly reduced feeding rates of G. fossarum exposed below the WWTP effluent if non-ozone treated wastewater was released. However, at the time the ozonation was operating, no adverse effects in feeding rates were observed below the effluent compared to the unaffected upstream sites. Also population studies in on-site flow-through stream microcosms displayed an increased feeding and a statistically significantly higher population size after ten weeks when exposed to ozone treated wastewater compared to non-ozone treated wastewater.
In conclusion, the present thesis documents that ozonation might be a suitable tool to reduce both the load of micropollutants as well as the ecotoxicity of wastewaters. Thus, this technology may help to meet the requirements of the Water Framework Directive also under predicted climate change scenarios, which may lead to elevated proportions of wastewater in the receiving stream during summer discharge. However, as ozone application may also produce by-products with a higher toxicity than their parent compounds, the implementation of this technique should be assessed further both via chemical analysis and ecotoxicological bioassays.