Refine
Navigation is a natural way to explore and discover content in a digital environment. Hence, providers of online information systems such as Wikipedia---a free online encyclopedia---are interested in providing navigational support to their users. To this end, an essential task approached in this thesis is the analysis and modeling of navigational user behavior in information networks with the goal of paving the way for the improvement and maintenance of web-based systems. Using large-scale log data from Wikipedia, this thesis first studies information access by contrasting search and navigation as the two main information access paradigms on the Web. Second, this thesis validates and builds upon existing navigational hypotheses to introduce an adaptation of the well-known PageRank algorithm. This adaptation is an improvement of the standard PageRank random surfer navigation model that results in a more "reasonable surfer" by accounting for the visual position of links, the information network regions they lead to, and the textual similarity between the link source and target articles. Finally, using agent-based simulations, this thesis compares user models that have a different knowledge of the network topology in order to investigate the amount and type of network topological information needed for efficient navigation. An evaluation of agents' success on four different networks reveals that in order to navigate efficiently, users require only a small amount of high-quality knowledge of the network topology. Aside from the direct benefits to content ranking provided by the "reasonable surfer" version of PageRank, the empirical insights presented in this thesis may also have an impact on system design decisions and Wikipedia editor guidelines, i.e., for link placement and webpage layout.