Refine
Web 2.0 provides technologies for online collaboration of users as well as the creation, publication and sharing of user-generated contents in an interactive way. Twitter, CNET, CiteSeerX, etc. are examples of Web 2.0 platforms which facilitate users in these activities and are viewed as rich sources of information. In the platforms mentioned as examples, users can participate in discussions, comment others, provide feedback on various issues, publish articles and write blogs, thereby producing a high volume of unstructured data which at the same time leads to an information overload. To satisfy various types of human information needs arising from the purpose and nature of the platforms requires methods for appropriate aggregation and automatic analysis of this unstructured data. In this thesis, we propose methods which attempt to overcome the problem of information overload and help in satisfying user information needs in three scenarios.
To this end, first we look at two of the main challenges of sparsity and content quality in Twitter and how these challenges can influence standard retrieval models. We analyze and identify Twitter content features that reflect high quality information. Based on this analysis we introduce the concept of "interestingness" as a static quality measure. We empirically show that our proposed measure helps in retrieving and filtering high quality information in Twitter. Our second contribution relates to the content diversification problem in a collaborative social environment, where the motive of the end user is to gain a comprehensive overview of the pros and cons of a discussion track which results from social collaboration of the people. For this purpose, we develop the FREuD approach which aims at solving the content diversification problem by combining latent semantic analysis with sentiment estimation approaches. Our evaluation results show that the FREuD approach provides a representative overview of sub-topics and aspects of discussions, characteristic user sentiments under different aspects, and reasons expressed by different opponents. Our third contribution presents a novel probabilistic Author-Topic-Time model, which aims at mining topical trends and user interests from social media. Our approach solves this problem by means of Bayesian modeling of relations between authors, latent topics and temporal information. We present results of application of the model to the scientific publication datasets from CiteSeerX showing improved semantically cohesive topic detection and capturing shifts in authors" interest in relation to topic evolution.