Refine
Keywords
- Titandioxid-Nanopartikeln (1) (remove)
The increasing application of titanium dioxide nanoparticles (nTiO2) entails an increased risk regarding their release to surface water bodies, where they likely co-occur with other anthropogenic stressors, such as heavy metals. Their co-occurrence may lead to an adsorption of the metal ions onto the particles. These nanoparticles often sediment, due to their agglomeration, and thus pose a risk for pelagic or benthic species. The combined toxicity of nTiO2 and heavy metals is likely influenced by the properties of both stressors (since they may alter their interaction) and by environmental parameters (e.g., organic matter, pH, ionic strength) affecting their fate.
These issues were not yet systematically examined by the recent literature. Therefore, this thesis investigated the influence of nTiO2-products with differing crystalline phase composition on the toxicity of copper (as representative for heavy metals) in presence of different organic matters using the pelagic test organism Daphnia magna.
Moreover, the duration of the stressors` interaction (=aging) likely modulates the combined toxicity. Hence, the influence of nTiO2 on copper toxicity after aging as a function of environmental parameters (i.e., organic matter, pH, ionic strength) was additionally investigated.
Finally, the transferability of the major findings to benthic species was examined using Gammarus fossarum. The present thesis discovered a reduction of the copper toxicity facilitated by nTiO2 for all assessed scenarios, while its magnitude was determined by the surface area and structure of nTiO2, the quantity and quality of organic matter as well as the aging of both stressors. The general copper toxicity reduction by nTiO2 was also transferable to benthic species, despite their potentially increased exposure due to the sedimentation of nTiO2 with adsorbed copper. These observations suggest the application of nTiO2 as remediation agent, but potential side effects (e.g., chronic toxicity, reactive oxygen species formation) require further investigations. Moreover, questions regarding the transferability to other stressors (e.g., different heavy metals, organic chemicals) and the fate of stressors adsorbed to nTiO2 in aquatic ecosystems remain open.